www.pwc.com

SDLC Maturity Models

SecAppDev 2017

Bart De Win

Bart De Win ?

- •20 years of Information Security Experience
 - •Ph.D. in Computer Science Application Security
- •Author of >60 scientific publications
- •ISC² CSSLP certified
- •Senior Manager @ PwC Belgium:
 - •Expertise Center Leader Trusted Software
 - •(Web) Application tester (pentesting, arch. review, code review, ...)

•Proficiency in Secure Software Development Lifecycle (SDLC) and Software Quality

- OWASP SAMM co-leader
- Contact me at bart.de.win@be.pwc.com

Agenda

- 1. Motivation
- 2. SAMM At A Glance
- 3. SAMM Practices
- 4. Conclusion

Typical questions

What should we be doing in our SDLC?

What are others doing in terms of software assurance?

What are good practices for software assurance?

Should we focus on threat modelling or code reviews?

How much time/effort/cost will this take?

Maturity models to the rescue

According to Wikipedia:

"Maturity is a measurement of the ability of an organisation for continuous improvement in a particular discipline."

A *maturity model* is a structure that represents different levels of maturity for one or more domains.

Why Maturity Models for SDLC?

An organization's behavior changes slowly over time.

• Changes must be **iterative** while working toward long-term goals

There is no single recipe that works for all organizations

• A solution must enable **risk-based** choices tailored to the organization

Guidance related to security activities must be prescriptive

• A solution must provide enough details for non-security-people

Overall, must be simple, well-defined, and **measurable**

SDLC Maturity Models

Agenda

- 1. Motivation
- 2. SAMM At A Glance
- 3. SAMM Practices
- 4. Conclusion

OWASP SAMM

Scope: Entire software lifecycle, rather than just development.

https://www.owasp.org/index.php/OWASP_SAMM_Project

Version 1.1, 2016

SDLC Maturity Models

SAMM Business Functions

- Start with the core activities tied to any organization performing software development
- Named generically, but should resonate with any developer or manager

Core Structure

Notion of Maturity

Level	Interpretation
0	Implicit starting point representing the activities in the practice being unfulfilled
1	Initial understanding and ad-hoc provision of the security practice
2	Increase efficiency and/of effectiveness of the security practice
3	Comprehensive mastery of the security practice at scale

Changing in version 1.5 !

assessment scores

An example

	Code Review		more on page 62	
		CR 2	CR3	
Овјестие	Opportunistically find basic code-level vulnerabilities and other high-risk security issues	Make code review during development more accurate and efficient through automation	Mandate comprehensive code review process to discover language-level and application-specific risks	
Activities	 A. Create review checklists from known security requirements B. Perform point-review of high-risk code 	 A. Utilize automated code analysis tools B. Integrate code analysis into development process 	 A. Customize code analysis for application-specific concerns B. Establish release gates for code review 	

OpenSAMM also defines

Objective

Activities

Results

Success Metrics

Costs

Personnel

Related Levels

Security Testing

Require application-specific security testing to ensure baseline security before deployment

ACTIVITIES

A. Employ application-specific security testing automation

Through either customization of security testing tools, enhancements to generic test case execution tools, or buildout of custom test harnesses, project teams should formally iterate through security requirements and build a set of automated checkers to test the security of the implemented business logic.

Additionally, many automated security testing tools can be greatly improved in accuracy and depth of coverage if they are customized to understand more detail about the specific software interfaces in the project under test. Further, organization-specific concerns from compliance or technical standards can be codified as a reusable, central test battery to make audit data collection and per-project management visibility simpler.

Project teams should focus on buildout of granular security test cases based on the business functionality of their software, and an organization-level team led by a security auditor should focus on specification of automated tests for compliance and internal standards.

B. Establish release gates for security testing

To prevent software from being released with easily found security bugs, a particular point in the software development life-cycle should be identified as a checkpoint where an established set of security test cases must pass in order to make a release from the project. This establishes a baseline for the kinds of security tests all projects are expected to pass.

Since adding too many test cases initially can result in an overhead cost bubble, begin by choosing one or two security issues and include a wide variety of test cases for each with the expectation that no project may pass if any test fails. Over time, this baseline should be improved by selecting additional security issues and adding a variety of corresponding test cases.

Generally, this security testing checkpoint should occur toward the end of the implementation or testing, but must occur before release.

For legacy systems or inactive projects, an exception process should be created to allow those projects to continue operations, but with an explicitly assigned timeframe for mitigation of findings. Exceptions should be limited to no more that 20% of all projects.

RESULTS

- Organization-wide baseline for expected application performance against attacks
- Customized security test suites to improve accuracy of automated analysis
- Project teams aware of objective goals for attack resistance

ADD'L SUCCESS METRICS

- >50% of projects using security testing customizations
- >75% of projects passing all security tests in past 6 months

ADD'L COSTS

- Buildout and maintenance of customizations to security testing automation
- Ongoing project overhead from security testing audit process
- Organization overhead from project delays caused by failed security testing audits

ADD'L PERSONNEL

- Architects (I day/yr)
- Developers (I day/yr)
- Security Auditors (1-2 days/yr)
- QA Testers (1-2 days/yr)
- Business Owners (I day/yr)
- Managers (1 day/yr)

RELATED LEVELS

Policy & Compliance - 2
 Secure Architecture - 3

SecAppDev 2017 13

Conducting assessments

Assessment process

• Supports both lightweight and detailed assessments

Roadmap templates per company type (ISV)

Creating Scorecards

- Gap analysis
 - Capturing scores from detailed assessments versus expected performance levels
- Demonstrating improvement
 - Capturing scores from before and after an iteration of assurance program build-out
- Ongoing measurement
 - Capturing scores over consistent time frames for an assurance program that is already in place

Roadmap templates

- To make the "building blocks" usable, SAMM defines Roadmaps templates for typical kinds of organizations
 - Independent Software Vendors
 - Online Service Providers
 - Financial Services Organizations
 - Government Organizations
- Organization types chosen because
 - They represent common use-cases
 - Each organization has variations in typical software-in(Security Testing
 - Optimal creation of an assurance program is different for each

OpenSAMM Tools

Translations of the OpenSAMM model (Spanish, Japanese, *German*, Ukrainian, ...)

Assessment questionnaire(s)

Roadmap chart template

Project plan template

OpenSAMM-BSIMM mapping

Benchmark Project

Mappings to security standards

• ISO/IEC 27034, PCI, ...

OpenSAMM Assessment Toolbox

BSIMM7 statistics: summary

EARTH SPIDER CHART

BSIMM7 statistics per activity

BSIMM7 SCORECARD

GOVER	NANCE	INTELL	IGENCE	SSDL TOU	CHPOINTS	DEPLO	YMENT
ACTIVITY	OBSERVED	ACTIVITY	OBSERVED	ACTIVITY	OBSERVED	ACTIVITY	OBSERVED
[SM1.1]	47	[AM1.2]	63	[AA1.1]	81	[PT1.1]	82
[SM1.2]	48	[AM1.3]	34	[AA1.2]	29	[PT1.2]	58
[SM1.3]	46	[AM1.5]	48	[AA1.3]	23	[PT1.3]	54
[SM1.4]	81	[AM2.1]	8	[AA1.4]	47	[PT2.2]	21
[SM2.1]	41	[AM2.2]	8	[AA2.1]	15	[PT2.3]	16
[SM2.2]	35	[AM2.5]	13	[AA2.2]	12	[PT3.1]	10
[SM2.3]	33	[AM2.6]	9	[AA2.3]	5	[PT3.2]	6
[SM2.5]	19	[AM2.7]	9	[AA3.1]	4		
[SM2.6]	33	[AM3.1]	4	[AA3.2]	0		
[SM3.1]	14	[AM3.2]	2				
[SM3.2]	9						
[CP1.1]	56	[SFD1.1]	74	[CR1.2]	58	[SE1.1]	46
[CP1.2]	84	[SFD1.2]	65	[CR1.4]	63	[SE1.2]	78
[CP1.3]	50	[SFD2.1]	27	[CR1.5]	28	[SE2.2]	27
[CP2.1]	24	[SFD2.2]	40	[CR1.6]	34	[SE2.4]	24
[CP2.2]	31	[SFD3.1]	6	[CR2.5]	22	[SE3.2]	12
[CP2.3]	34	[SFD3.2]	10	[CR2.6]	15	[SE3.3]	3
[CP2.4]	36	[SFD3.3]	1	[CR2.7]	19	[SE3.4]	0
[CP2.5]	38			[CR3.2]	3		
[CP3.1]	19			[CR3.3]	2		
[CP3.2]	13			[CR3.4]	3		
[CP3.3]	5			[CR3.5]	5		
[T1.1]	69	[SR1.1]	60	[ST1.1]	78	[CMVM1.1]	82
[T1.5]	27	[SR1.2]	66	[ST1.3]	72	[CMVM1.2]	84
[T1.6]	17	[SR1.3]	64	[ST2.1]	22	[CMVM2.1]	69
[T1.7]	37	[SR2.2]	28	[ST2.4]	10	[CMVM2.2]	74
[T2.5]	13	[SR2.3]	22	[ST2.5]	7	[CMVM2.3]	41
[T2.6]	14	[SR2.4]	21	[ST2.6]	9	[CMVM3.1]	3
[T2.7]	5	[SR2.5]	22	[ST3.3]	4	[CMVM3.2]	5
[T3.1]	3	[SR2.6]	17	[ST3.4]	2	[CMVM3.3]	8
[T3.2]	5	[SR3.1]	8	[ST3.5]	4	[CMVM3.4]	6
[T3.3]	2	[SR3.2]	11				
[T3.4]	7						
[T3.5]	2						

SDLC Maturity Models

SecAppDev 2017 21

Agenda

- 1. Motivation
- 2. SAMM At A Glance
- **3. SAMM Practices**
- 4. Conclusion

SAMM Security Practices - Governance

Strategy & Metrics

Goal is to establish a software assurance framework within an organisation

• Foundation for all other OpenSAMM practices

Characteristics:

- Measurable
- Aligned with business risk

Driver for continuous improvement and financial guidance

SecAppDev 2017 24

Strategy & Metrics

	Strategy & Metrics	more on page 34	
	<u> </u>	<u>∭</u> sм2	<u> </u>
Овјестіче	Establish unified strategic	Measure relative value of	Align security expenditure
	roadmap for software security	data and software assets	with relevant business
	within the organization	and choose risk tolerance	indicators and asset value
Activities	 A. Estimate overall business	 A. Classify data and applications	 A. Conduct periodic industry-
	risk profile B. Build and maintain assurance	based on business risk B. Establish and measure per-	wide cost comparisons B. Collect metrics for
	program roadmap	classification security goals	historic security spend

Policy & Compliance

Goal is to understand and adhere to legal and regulatory requirements

- Typically external in nature
- This is often a very informal practice in organisations !

Characteristics

- Organisation-wide vs. project-specific
- Scope

Important driver for software security requirements

Policy & Compliance

	Policy & Compliance	more on page 38	
	1 PC	<u>П</u> РС 2	1 PC 3
Овјестиче	Understand relevant governance and compliance drivers to the organization	Establish security and compliance baseline and understand per-project risks	Require compliance and measure projects against organization-wide policies and standards
ACTIVITIES	 A. Identify and monitor external compliance drivers B. Build and maintain compliance guidelines 	 A. Build policies and standards for security and compliance B. Establish project audit practice 	 A. Create compliance gates for projects B. Adopt solution for audit data collection

Education & Guidance

Goal is to disseminate security-oriented information to *all* stakeholders involved in the software development lifecycle

• By means of standards, trainings, ...

To be integrated with organisation training curriculum A once-of effort is not sufficient Teach a fisherman to fish

3. Technical guidelines form the basis for several other practices

Education & Guidance

	Education & Guidance		more on þage 42
	<u> </u>	<u>∎</u> EG2	î ∎⊑G3
OBJECTIVE	Offer development staff	Educate all personnel in	Mandate comprehensive
	access to resources around	the software life-cycle with	security training and
	the topics of secure	role-specific guidance on	certify personnel for
	programming and deployment	secure development	baseline knowledge
ACTIVITIES	 A. Conduct technical security	 A. Conduct role-specific	 A. Create formal application
	awareness training B. Build and maintain	application security training B. Utilize security coaches to	security support portal B. Establish role-based
	technical guidelines	enhance project teams	examination/certification

SAMM Security Practices - Construction

Threat Assessment

The goal of this practice is to focus on the attacker perspective of things

- To make sure that security is not only functionality-driven
- Remember that software security = white + black

Very common practice in safety-critical systems

• Less so in others

This is where "the magic" kicks in

• Your imagination is the limit

Threat Assessment

Security Requirements

Goal is to make security specification more explicit

• Turn security into a positively-spaced problem

Source of security requirements

- Compliance
- Standard
- Functionality
- Quality

Requirements should be specified in a S.M.A.R.T. way

Security Requirements

	Security Requirements	more on page 50	
	5 R 1	SR 2	SR 3
OBJECTIVE	Consider security explicitly during the software requirements process	Increase granularity of security requirements derived from business logic and known risks	Mandate security requirements process for all software projects and third-party dependencies
Activities	 A. Derive security requirements from business functionality B. Evaluate security and compliance guidance for requirements 	 A. Build an access control matrix for resources and capabilities B. Specify security requirements based on known risks 	 A. Build security requirements into supplier agreements B. Expand audit program for security requirements

Secure Architecture

Key practice for security

Poor decisions at this step can have major impact, and are often difficult (or costly) to fix.

- 2. Characteristics
- Take into account security principles
- Risk is a factor of all components (incl. 3rd party
- 3. Use proven solutions
- Don't roll you own crypto
- Use company standards and best practices

Secure Architecture

	Secure Architecture	more on page 54	
	[X] sa 1	* SA 2	* SA3
OBJECTIVE	Insert consideration	Direct the software design	Formally control the
	of proactive security	process toward known-	software design process
	guidance into the software	secure services and secure-	and validate utilization
	design process	by-default designs	of secure components
ACTIVITIES	 A. Maintain list of recommended	 A. Identify and promote security	 A. Establish formal reference
	software frameworks B. Explicitly apply security	services and infrastructure B. Identify security design	architectures and platforms B. Validate usage of frameworks,
	principles to design	patterns from architecture	patterns, and platforms

SAMM Security Practices - Verification

Design Review

- security assessment of attack surface, software design and architecture
- lightweight activities => formal inspection of data flows & security mechanisms
- enforcement of baseline expectations
 for conducting design assessments and
 reviewing findings before releases are accepted.

 \Rightarrow Assess and validate artifacts to understand protection mechanisms

Design Review

	Design Review		more on page 58	
OBJECTIVE	Support ad hoc reviews of software design to ensure baseline mitigations for known risks	Offer assessment services to review software design against comprehensive best practices for security	Require assessments and validate artifacts to develop detailed understanding of protection mechanisms	
ACTIVITIES	 A. Identify software attack surface B. Analyze design against known security requirements 	 A. Inspect for complete provision of security mechanisms B. Deploy design review service for project teams 	 A. Develop data-flow diagrams for sensitive resources B. Establish release gates for design review 	

Implementation Review

Assessment of source code:

- vulnerability discovery
- related mitigation activities
- establish secure coding baseline

Will require tool investment:

- Language specific
- Basic open source tooling
- Commercial tools maturing

Process & education important! •SDLC Maturity Models

Implementation Review

	Implementation Review		more on page 52	
		IR 2	IR 3	
Овјестіче	Opportunistically find basic code-level vulnerabilities and other high-risk security issues	Make implementation review during development more accurate and efficient through automation	Mandate comprehensive implementation review process to discover language-level and application-specific risks	
ACTIVITIES	 A. Create review checklists from known security requirements B. Perform point-review of high-risk code 	 A. Utilize automated code analysis tools B. Integrate code analysis into development process 	A. Customize code analysis for application-specific concerns B. Establish release gates for code review	

Security Testing

- Based on security & compliance requirements / checklist of common vulnerabilities
- Manual testing can be done, scaled with tooling: intercepting proxy and/or scanner
- Detected defects will require validation, risk analysis & recommendations to fix
- Automate to repeat tests for each release
- Introduce security test-driven development
- Test results to be reported to & accepted by owner for each deployment

ons

Security Testing

	Security Testing		more on page 6	
	📝 sт 1	🔽 sт 2	у sт 3	
OBJECTIVE	Establish process to perform basic security tests based on implementation and software requirements	Make security testing during development more complete and efficient through automation	Require application- specific security testing to ensure baseline security before deployment	
ACTIVITIES	 A. Derive test cases from known security requirements B. Conduct penetration testing on software releases 	 A. Utilize automated security testing tools B. Integrate security testing into development process 	 A. Employ application-specific security testing automation B. Establish release gates for security testing 	

Security Practices - Operations

Issue Management

Prepare for WHEN, not IF! Symptoms of malfunctioning SDLC

- handling vulnerability reports and operational incidents
- lightweight assignment of roles=> formal incident response & communication process
- Use vulnerability metrics and root-cause analysis to improve SDLC
- spoc per team & security response team
- communication & information flow is key!
- patch release process & responsible/legal disclosure

SDLC Maturity Models

Issue Management

	Issue Management		more on page 60	
	্রা আ	<u>्र</u> ाल 2	ౖ™3	
OBJECTIVE	Understand high-level plan for responding to issue reports or incidents	Elaborate expectations for response process to improve consistency and communications	Improve analysis and data gathering within response process for feedback into proactive planning	
ACTIVITIES	 A. Identify point of contact for security issues B. Create informal security response team(s) 	 A. Establish consistent issue reponse process B. Adopt a security issue disclosure process 	A. Conduct root cause analysis for for issues B. Collect per-issue metrics	

Environment Hardening

- Underlying infrastructure hardening & patching
- Track (3rd party) libraries & components
 TOP-10 A9 Using Known Vulnerable
- Add WAF layer (virtual patching)

Environment Hardening

	Environment Hardening		more on page 7-	
	© € H 1	© [∞] ≡ н2	© ^с ен3	
OBJECTIVE	Understand baseline operational environment for applications and software components	Improve confidence in application operations by hardening the operating environment	Validate application health and status of operational environment against known best practices	
ACTIVITIES	 A. Maintain operational environment specification B. Identify and install critical security upgrades and patches 	 A. Establish routine patch management process B. Monitor baseline environment configuration status 	 A. Identify and deploy relevant operations protection tools B. Expand audit program for environment configuration 	

Operational Enablement

Support users & operators

Security documentation!

Feed/document application security logs into SIEM

Lightweight documentation => operational security guides

Change management & end to end deployment integrity

Even more important for outsourced development!

Operational Enablement

	Operational Enablement		more on page 76	
	©° 0⊧1	© ⁰ ∘₌ 2	©° ≥ 3	
OBJECTIVE	Enable communications between development teams and operators for critical security-relevant data	Improve expectations for continuous secure operations through provision of detailed procedures	Mandate communication of security information and validate artifacts for completeness	
ACTIVITIES	 A. Capture critical security information for deployment B. Document procedures for typical application alerts 	 A. Create per-release change management procedures B. Maintain formal operational security guides 	 A. Expand audit program for operational information B. Perform code signing for application components 	

Agenda

- 1. Motivation
- 2. SAMM At A Glance
- 3. SAMM Practices
- 4. Conclusion

Conclusions

Maturity models (such as SAMM) provide an excellent framework for reasoning on software assurance, on a *strategic* level:

- Evaluate your as-is
- Define and improve towards your to-be
- Compare against peers

Popular approach for companies today that work on software assurance Different flavours exist, choose one that fits your company's context.

The models are easy to start with, but challenging to *fully* grasp. Don't let this scare you, and get started!