
SDLC Introduction
and Process Models

Bart De Win

www.pwc.com

SecAppDev 2017



Bart De Win ?

•20 years of Information Security Experience

•Ph.D. in Computer Science - Application Security

•Author of >60 scientific publications

•ISC2 CSSLP certified

•Senior Manager @ PwC Belgium:

•Expertise Center Leader Trusted Software

•(Web) Application tester (pentesting, arch. review, code review, ...)

•Proficiency in Secure Software Development Lifecycle (SDLC) and Software 
Quality

• OWASP SAMM co-leader

• Contact me at bart.de.win@be.pwc.com

SDLC Introduction and Process models SecAppDev 2017

2



Agenda

1. Motivation

2. Process Models

3. Agile Development

4. Good Practices

5. Conclusion

•SecAppDev 2017

•3



Application Security Problem

75% of vulnerabilities are application related

Training

Growing connectivity
Mobile

Software complexity

Better

Faster

Technology stacks

Cloud

Adaptability

SecAppDev 2017SDLC Introduction and Process models

4

Quality

Cost
Speed of 
Delivery



Application Security Symbiosis

SecAppDev 2017SDLC Introduction and Process models

5



Application Security during Software Development

Bugs Flaws Cost

Analyse Design Implement Test Deploy Maintain

SecAppDev 2017SDLC Introduction and Process models

6



The State-of-Practice in Secure Software 
Development

Problematic, since:

• Focus on bugs, not flaws

• Penetration can cause major harm

• Not cost efficient

• No security assurance

- All bugs found ?

- Bug fix fixes all occurences ? (also future ?)

- Bug fix might introduce new security vulnerabilities

Analyse Design Implement Test Deploy Maintain

(Arch review) Pentest Penetrate & 
Patch

SecAppDev 2017SDLC Introduction and Process models

7



SDLC ?

Enterprise-wide software security improvement program

• Strategic approach to assure software quality

• Goal is to increase systematicity

• Focus on security functionality and security hygiene

Analyse Design Implement Test Deploy Maintain

SDLC

SecAppDev 2017SDLC Introduction and Process models

8



SDLC Objectives & Principles

To develop (and maintain) software in a 
consistent and efficient way with a 

demonstrable & standards-
compliant security quality, inline with 

the organizational risks.

SecAppDev 2017SDLC Introduction and Process models

9



SDLC Cornerstones

SecAppDev 2017SDLC Introduction and Process models

10SecAppDev 2013

• Roles & ResponsibilitiesPeople

• Activities
• Deliverables
• Control Gates

Process

• Standards & Guidelines
• Compliance
• Transfer methods

Knowledge

• Development support
• Assessment tools
• Management tools

Tools & 
Components

Risk Training



Strategic ? 

Organizations with a proper SDLC will experience
an 80 percent decrease in critical vulnerabilities

Organizations that acquire products and services 
with just a 50 percent reduction in vulnerabilities
will reduce configuration management and 
incident response costs by 75 percent each.

SecAppDev 2017SDLC Introduction and Process models

11



Does it really work ?

SecAppDev 2017SDLC Introduction and Process models

12



(Some) SDLC-related initiatives

•Microsoft SDL

•BSIMM

•SP800-64

•TouchPoints

•CLASP

•SAMM

•SSE-CMM

•TSP-Secure

•GASSP
SecAppDev 2017SDLC Introduction and Process models

13

http://www.gartner.com/silentlocalechooser.jsp?locale=wcw
http://www.gartner.com/silentlocalechooser.jsp?locale=wcw


Agenda

1. Motivation

2. Process Models

3. Agile Development

4. Good Practices

5. Conclusion

•SecAppDev 2017

•14



Selected Example: Microsoft SDL (SD3+C)

SecAppDev 2017SDLC Introduction and Process models

15



Training

1. Training

2. Requirements

3. Design

4. Implementation

5. Verification

6. Release

7. Response

Content

• Secure design

• Threat modeling

• Secure coding

• Security testing

• Privacy

Why?

SecAppDev 2017SDLC Introduction and Process models

16



1. Training

2. Requirements

3. Design

4. Implementation

5. Verification

6. Release

7. Response

Requirements

When you consider security and 
privacy at a foundational level

Project inception

Cost analysis

Determine if development and 
support costs for improving 

security and privacy are 
consistent with business 

needs

SecAppDev 2017SDLC Introduction and Process models

17



1. Training

2. Requirements

3. Design

4. Implementation

5. Verification

6. Release

7. Response

Design

Establish and follow best practices for 
Design 

≠ secure-coding 
best practices

Risk analysis

Threat modeling

STRIDE

SecAppDev 2017SDLC Introduction and Process models

18



1. Training

2. Requirements

3. Design

4. Implementation

5. Verification

6. Release

7. Response

Implementation

Creating documentation and tools for users 
that address security and privacy

Establish and follow best practices for 
development

1. Review available information resources

2. Review recommended development tools

3. Define, communicate and document all best
practices and policies

SecAppDev 2017SDLC Introduction and Process models

19



1. Training

2. Requirements

3. Design

4. Implementation

5. Verification

6. Release

7. Response

Verification

Security and privacy testing

1. Confidentiality, integrity and availability of the
software and data processed by the software

2. Freedom from issues that could result in
security vulnerabilities

Security push

SecAppDev 2017SDLC Introduction and Process models

20



1. Training

2. Requirements

3. Design

4. Implementation

5. Verification

6. Release

7. Response

Release

Public pre-release review

Planning

Preparation for

incident response

1. Privacy

2. Security

SecAppDev 2017SDLC Introduction and Process models

21



1. Training

2. Requirements

3. Design

4. Implementation

5. Verification

6. Release

7. Response

Release

Sign-off process to ensure security, privacy and other policy compliance

Release to manufacturing/release to web

Outcomes:

- Passed FSR

- Passed FSR with exceptions

- FSR escalation

Final security and privacy review

SecAppDev 2017SDLC Introduction and Process models

22



Response

1. Training

2. Requirements

3. Design

4. Implementation

5. Verification

6. Release

7. Response

=> able to respond appropriately to reports of vulnerabilities 
in their software products, and to attempted exploitation of 
those vulnerabilities.

Execute Incident Response Plan

SecAppDev 2017SDLC Introduction and Process models

23



Process Models: wrapup

Microsoft SDL:

Mature, long-term practical experience

Heavyweight, ISV flavour

Several supporting tools and methods

Other process models exist, with their pro’s and con’s 

In general, no process will fit your organization perfectly

Mix-and-Match + adaptation are necessary

SecAppDev 2017SDLC Introduction and Process models

24



•PwC

Agenda

1. Motivation

2. Process Models

3. Agile Development

4. Good Practices

5. Conclusion

•SecAppDev 2017

•25

•SDLC Introduction and Process models



Agile Models: Rationale and Fundamentals

• Many traditional, large-scale software development projects are 
going wrong

• Combination of business and technical causes

• Software is delivered late in the lifecycle

• Little flexibility during the process

Agile models focus on:

• Frequent interaction with stakeholders

• Short cycles

=> to increase flexibility and reduce risk

SecAppDev 2017SDLC Introduction and Process models

26



Agile Models: Scrum

SecAppDev 2017SDLC Introduction and Process models

27



Agile & Secure development: a mismatch ?

SecAppDev 2017SDLC Introduction and Process models

28

Agile Dev. Security

Speed & Flexibility Stable & Rigorous

Short cycles Extra activities

Limited documentation Extensive analysis

Functionality-driven Non-functional



Secure Agile is …

enablement, rather than control

SecAppDev 2017SDLC Introduction and Process models

29



Secure Agile – Where’s the difference ?

SecAppDev 2017SDLC Introduction and Process models

30SecAppDev 2013

• Roles & ResponsibilitiesPeople

• Activities
• Deliverables
• Control Gates

Process

• Standards & Guidelines
• Compliance
• Transfer methods

Knowledge

• Development support
• Assessment tools
• Management tools

Tools & 
Components

Risk Training



Secure Agile: general principles

• Make security a natural part of the process, but don’t overdo

• lightweight, in-phase and iterative 

• preventative and detective controls

• Be involved at key moments in the process

• Leverage important agile concepts

• Small steps at a time (i.e. continuous improvement)

SecAppDev 2017SDLC Introduction and Process models

31



User Stories

• Capture security requirements, policies and regulations in user 
stories

• Simple, concrete and actionable

• Reusable?

• Mark all user stories with security labels

• Integrate security into user stories as:

• Definition of Done

• Acceptance criteria

SecAppDev 2017SDLC Introduction and Process models

32



Threat Modelling & Abuser Stories

Consider writing application security risks as stories

• Security stories: “As a developer, I want to prevent SQLi into my 
application”

• Not a real user story (not relevant for product owner, but to help 
the development team)

• Never really finished

• Thinking like the bad guy: “User X should not have access to this 
type of data”

• Think about what users don’t want to and can’t do, how to trust 
users, what data is involved, …

SecAppDev 2017SDLC Introduction and Process models

33



Sprint Planning

• Features to be implemented per sprint are selected during sprint 
planning.

• Ensure security tasks are not “stuck” on the backlog

• Presence of security-savvy person during sprint planning

• Establish rules to deal with security stories

• Security labels can be used to drive selection

SecAppDev 2017SDLC Introduction and Process models

34



Example: MS SDL-Agile

Basic approach: Fit SDL tasks to the backlog as non-functional stories

Non-Technical vs. Technical

Requirement vs. Recommendation

Each SDL task goes in one of three types of requirements:

SecAppDev 2017SDLC Introduction and Process models

35

Every 
Sprint

Bucket
One-
Time



Example: Every-Sprint Requirements (excerpt)

• All team members must have had security training in the past year

• All database access via parameterized queries

• Fix security issues identified by static analysis

• Mitigate against Cross-Site Request Forgery

• Update Threat models for new features

• Use Secure cookies over HTTPS

• Link all code with the /nxcompat linker option 

• Encrypt all secrets such as credentials, keys and passwords

• Conduct internal security design review

SecAppDev 2017SDLC Introduction and Process models

36



Example: Bucket Requirements (excerpt)

Bucket A: Security Verification

• Perform fuzzing (network/ActiveX/File/RPC/…)

• Manual and automated code review for high-risk code

• Penetration testing

Bucket B: Design Review

• Conduct a privacy review

• Complete threat model training

Bucket C: Planning

• Define or update the security/privacy bug bar

• Define a BC/DR plan

SecAppDev 2017SDLC Introduction and Process models

37



Example: One-Time Requirements (excerpt)

• Create a baseline threat model

• Establish a security response plan

• Identify your team’s security expert

• Use latest compiler versions

SecAppDev 2017SDLC Introduction and Process models

38



Security testing

• Automated testing is an important element in agile quality control

• For security, this can be realized by:

• Unit testing (e.g., authorisation checks, logging, …)

• Regression testing

• Static analysis (SAST) based on coding guidelines

• Dynamic analysis (DAST) based on scenarios and/or vulnerability 
tests

• Fuzzing

SecAppDev 2017SDLC Introduction and Process models

39



Thou shall use Iteration Zero

Many agile projects start with an “Iteration Zero” to

• Get the team together

• Choose tools and frameworks

• Get to know the domain

This is an opportunity for security too, to

• Assign security responsibles

• Select security tools

• Determine risk levels

SecAppDev 2017SDLC Introduction and Process models

40



Secure Agile process: key take-aways

Ensure that security-savvy people are involved at important phases:

• Planning game (to enhance/verify requirements)

• Development (daily follow-up)

• Review (to support acceptance)

• Retrospective (to improve dev. Practices for security)

Different profiles can be distinguished:

• Security architect

• Security engineer

• Risk Manager/Governance

SecAppDev 2017SDLC Introduction and Process models

42



Secure Agile – Where’s the difference ?

SecAppDev 2017SDLC Introduction and Process models

43SecAppDev 2013

• Roles & ResponsibilitiesPeople

• Activities
• Deliverables
• Control Gates

Process

• Standards & Guidelines
• Compliance
• Transfer methods

Knowledge

• Development support
• Assessment tools
• Management tools

Tools & 
Components

Risk Training



Secure Agile Tool Chain: general principles

• Secure agile is about enabling, rather than controlling

• Embedding security tools to support development

• Given short sprint cycles, automation is important.

• Good tools do:

• Work continuously (to avoid developers being blocked)

• Integrate well into developer’s world

• Avoid causing too much overhead or confusion

• Evaluate carefully which tools to implement (and which to avoid)

SecAppDev 2017SDLC Introduction and Process models

44



Secure Coding

Integrate security tools in the development IDE’s:

• Support for secure coding guidelines

• Static analysis tools

Ensure common development environment:

• Programming run-time

• Security components (e.g., SSO IdP’s, ...)

Proper source control and versioning

SecAppDev 2017SDLC Introduction and Process models

45



Security testing

• Integrated with backlogs where appropriate

SecAppDev 2017SDLC Introduction and Process models

46

Daily

• Unit tests
• Regression 

tests
• Peer 

reviews

Per sprint

• Static 
Analysis

• Dynamic 
Analysis

• Fuzzing

Before 
release

• Penetration 
testing



Secure Build

Central build, using central configuration files

Consider:

• Code signing

• Obfuscation

• …

SecAppDev 2017SDLC Introduction and Process models

47



Secure Deploy / DevOps

• Automated deploy, using central configuration files

• Consider:

• Random key generation

• Appropriate key/certificate protection (config files, key stores, …)

• Proper hardening of application servers

• Security appliance configuration (e.g., WAF)

• Security monitoring

• …

SecAppDev 2017SDLC Introduction and Process models

48



Hybrid models

• Many companies are combining waterfall and agile

• Studies indicate better resulting quality

• For security, easier to hook into

• E.g., full architecture cycle

SecAppDev 2017SDLC Introduction and Process models

49



Best Practices / Lessons Learned

• Use small steps at a time – the agile way

• Build on agile concepts (backlog, retrospective)

• Find a way to prioritize security in the planning

• Use automation as much as possible

• Review samples independent of project sprints

• Rely on security champions

• E.g., security requirements, design review, code review

• Agile should not be an excuse for not having 
documentation 

SecAppDev 2017SDLC Introduction and Process models

50



Agenda

1. Motivation

2. Process Models

3. Agile Development

4. Good Practices

5. Conclusion

•51

•SecAppDev 2017



Good Practices

•SecAppDev 2017•SDLC Introduction and Process models

•Application 

Security

•Architecture & 

Design
•Secure Coding

•Testing•Process

•Development 

Environment

•Knowledge & 

Training

 Keep it small and simple

 Secure by design

 Least privilege

 Defense in depth

 Threat Modelling

 It’s everybody’s responsibility

 Clear roles & agreements

 Good documentation is important, 

also in Agile

 Sign your applications

 Standardized dev. environment

 Central code repository

 Central build system

 Controlled promotion mechanism

 Continuous integration

 Screen & scan external libraries

 Regularly update tools & libraries

 Host third-party libraries locally

 Define a company standard

 Validate input & encode output

 Default deny

 Avoid hardcoded passwords

 Obfuscate client-side code

 Protect against automated 

attacks

 Automated quality scanning 

 Peer review

 Automated static analysis

 Automated dynamic testing

 Intelligent fuzzing can help

 Integrate with bug tracking 

systems

 Security awareness training

 Appoint security champions

 Establish a central knowledge 

portal

 Use Google wisely

 Don’t post internal code on Github

 Reuse proven crypto

•52



SDLC impact

Difficult to predict, but:

• Projects are estimated to increase with 5 – 15% for security

• ROI is achievable taking maintenance and incident management 
into account

• SDLC capability costs approx. 1 FTE/100 developers

SecAppDev 2017SDLC Introduction and Process models

53



Agenda

1. Motivation

2. Process Models

3. Agile Development

4. Good Practices

5. Conclusion

•SecAppDev 2017

•54



Conclusions

SDLC is the framework for most of this week’s sessions

No model is perfect, but they provide good guidance

Take into account all cornerstones

Risk Management is key for rationalizing effort

SecAppDev 2017SDLC Introduction and Process models

55



SDLC Cornerstones

SecAppDev 2017SDLC Introduction and Process models

56SecAppDev 2013

• Roles & ResponsibilitiesPeople

• Activities
• Deliverables
• Control Gates

Process

• Standards & Guidelines
• Compliance
• Transfer methods

Knowledge

• Development support
• Assessment tools
• Management tools

Tools & 
Components

Risk Training


