
Application Security

Trends and Challenges

SecAppDev 2015

Wouter Joosen

iMinds- DistriNet, Department of Computer Science, KU Leuven
February 23, 2015

Trends & Context

23/02/2015 SecAppDev 2015

Technology Trends

23/02/2015

Á [1/3] Integration of software in the ñphysical
worldò
ÁCPS ïCyber Physical Systems

Á IoT ïInternet-of-Things

ÁComputational capacity is omnipresent

ÁExample:
ÁTRANSITION, From ad-hoc code development to code

reuse through middleware for networked embedded
control systems

SecAppDev 2015

Technology Trends [2/3]

23/02/2015

Á Intelligence, relevant data all over the
placeé.
ÁContext-aware computing unfolding beyond location and
profileé

ÁStrong dependencies between sensing equipment, data
processing entities and storage platforms

ÁComputational capacity is omnipresent, so is analyticsé

ÁExample:
ÁCAPRADS, A Context-Aware Platform for RApid

Decision Support

SecAppDev 2015

Technology Trends [3/3]

23/02/2015

ÁCloud Computing (the trivial one)
ÁUltimately determining the delivery model of software
and servicesé

ÁFlexible ñsoftware-definedò architectures to deal with
rapid change, upgrading, reconfiguration, scaling etc.

Á (But how about the attack surfaces?)

ÁExamples
ÁDeCoMAdS: Deployment and Configuration Middleware

for Adaptive Software-as-a-Service.
Á ὈὓὛ: Decentralized Data Management and Migration

for Software-as-a-Service

SecAppDev 2015

Application Development today

23/02/2015

ÁDespite all technology trendsé..

AGILITY

SecAppDev 2015

Application Security

23/02/2015

ÁMany technologies are available

ÁSome still being developed, but on the
horizon

ÁYet other are subject to a strategic
investment (Still R&D)

SecAppDev 2015

Available?

23/02/2015

ÁDynamic Application Security Testing (DAST)

ÁéStatic Application Security Testing (SAST)

ÁSIEM (Security Incident and event
management)

Áé Context-aware security (e.g. credentials that
are requested/presented can depend on
location).

Á etc.

SecAppDev 2015

Note: Both development support

and run time services/facilities

to be integratedé

23/02/2015 SecAppDev 2015

Following soon

23/02/2015

ÁMobile application security testing

ÁWeb application firewalls

ÁProfessional Services?

ÁApplication Security as-a-service?

SecAppDev 2015

Many sources confirm é

E.g. market analysts such as Gartner, Forrester etc.

23/02/2015 SecAppDev 2015

Some of the heavy lifting

23/02/2015

ÁDevOps & Security

ÁProtected Mobile Browsers

Á (Runtime) Application Self-Protection

é and even furtheré

SecAppDev 2015

Illustration 1:

Isolating and Restricting Client -Side

JavaScript

(towards a secure browser)

Featuring the PhD thesis of Dr. Steven Van Acker

January 6, 2015

Where to fix the problem?

PuppyShelter.com EvilSkeletor.comVisitor

1. JavaScript subsets and
rewriting

2. Modifying the browser
3. Working with existing

tools

23/02/2015 SecAppDev 2015

Where to fix the problem?

PuppyShelter.com EvilSkeletor.comVisitor

1. JavaScript subsets and
rewriting

23/02/2015 SecAppDev 2015

JavaScript subsets and rewriting

PuppyShelter.com EvilSkeletor.comVisitor

Á Main idea: analyze JavaScript before executing it, rewriting if
necessary

Á Examples: Caja, FBJS, ADsafe, BrowserShield, é

Á Unfortunately:

ÁAnalyzing JavaScript is difficult. Using a JavaScript subset
makes it easier but requires effort from third-party

ÁRewriting JavaScript changes architecture of the Web

23/02/2015 SecAppDev 2015

Where to fix the problem?

PuppyShelter.com EvilSkeletor.comVisitor

2. Modifying the browser

23/02/2015 SecAppDev 2015

PuppyShelter.com EvilSkeletor.comVisitor

BEEP, ConScript, WebJail, AdSentry, é

Modifying the browser

23/02/2015 SecAppDev 2015

WebJail: Least -privilege Integration of

Third -party Components in Web Mashups

Steven Van Acker, Philippe De Ryck, Lieven Desmet, Frank Piessens, Wouter Joosen
ACSAC 2011

23/02/2015 SecAppDev 2015

WebJail : main idea

Á Restrict sensitive JavaScript functionality in the DOM of
an iframe

Á An advice function intercepts calls to a DOM function
and mediates access

Á All access-paths go through the advice function

Á Enforced in the browser, advice is locked away safely

23/02/2015 SecAppDev 2015

WebJail : policies

Á Easy to use policy language

Á All JavaScript functionality divided into 9 categories:
Á DOM Access
Á Cookies
Á External communication
Á Inter-frame communication
Á Client-side storage
Á UI and rendering
Á Media
Á Geolocation
Á Device access

{
" framecomm " : "yes",
" extcomm " : [" google.com ", " youtube.com "], "device"
: " noó

}

23/02/2015 SecAppDev 2015

WebJail : architecture

23/02/2015 SecAppDev 2015

WebJail : conclusion

ÁWebJail is a viable JavaScript sandbox
ÁFull mediation

ÁFast

ÁUnfortunately:
ÁDeploying a browser modification to all browsers on

the Web is hard

ÁñJust get the modification adopted by W3C so all
browsers implement itò Ąnot so easyé

23/02/2015 SecAppDev 2015

Where to fix the problem?

PuppyShelter.com EvilSkeletor.comVisitor

3. Working with

existing tools

23/02/2015 SecAppDev 2015

JSand : Complete client -side sandboxing of

third -party JavaScript without browser

modifications.

Pieter Agten, Yoran Brondsema, Steven Van Acker, Phu Phung, Lieven Desmet, Frank
Piessens

ACSAC 2012

23/02/2015 SecAppDev 2015

JSand: object -capability env .

ÁObject capability environment:
ÁAll functionality is encapsulated in objects

ÁReferences to those objects can not be forged

ÁWithout reference to a certain object, there is no access
to its functionality

ÁE.g. window.alert()
Áalert is a property of the window object

ÁWithout access to the window object, alert() can not be
used

ÁSecure ECMAScript is object-capability safe
ÁSubset of JavaScript strict mode

23/02/2015 SecAppDev 2015

JSand: Under the hood

Á Download third-party script directly to browser

Á Load script in isolated object-capability
environment using Googleôs Secure ECMAScript

Á Enable access to outside using membrane around
DOM
Á Policy determines permitted operations

3rd party

JavaScript

Embedding page

J
S

a
n
d

D
O

M

23/02/2015 SecAppDev 2015

JSand: Conclusion

ÁJSand is also a viable sandboxing solution
ÁFull mediation

ÁWorks out-of-the-box on modern browsers

ÁUnfortunately:
ÁReusing functionality that was not intended for

sandboxing results in unwanted performance hit

23/02/2015 SecAppDev 2015

Observations

ÁThere is no silver bullet (yet)

ÁReusing currently standardized
functionality is not optimal
ÁE.g. performance overhead

ÁSpecialized JavaScript sandboxing
functionality is required
ÁProof of concept as browser modification

ÁBut in long run, functionality must be standardized

23/02/2015 SecAppDev 2015

Illustration 2:

Security Primitives for

Protected Module Architectures

Featuring the PhD thesis of Dr. Raoul Strackx

December 17, 2014

Emerging technology: PMAõs

ÁProtected Module Architectures:
Á Low-level security architectures that implement an ñinverse
sandboxò: protect a module from a buggy or malicious environment

Å E.g. run code securely even on top of a kernel infected with malware

23/02/2015 SecAppDev 2015

Emerging technology: PMAõs

Á Implementations
Á Pioneering work by Parno et. al. at CMU: the Flicker system

Å https://sparrow.ece.cmu.edu/group/flicker.html

Å Bryan Parno was awarded the ACM 2010 doctoral thesis award for this work

Á Follow-up implementations, including several from iMinds:

Å Fides (Strackx et al, CCS 2012), Sancus (Noorman et al., Usenix Sec
2013)

Á INTEL publicly announced their implementation quite a while
ago (snclaves in SGX)
Å http://software.intel.com/en-us/intel-isa-extensions#pid-19539-1495

https://sparrow.ece.cmu.edu/group/flicker.html
http://software.intel.com/en-us/intel-isa-extensions

Protected module architecture

(simplified)

ÁModules consist of:
ÁA code section, with designated entry points

ÁA data section (also containing control data)

ÁThe PMA:
ÁControls creation/deletion of

modules

ÁEnforces a PC-based access
control model

Some Achievements

Á How can Protected Module Architectures efficiently, securely and
reliably persist state?

Á What is the minimal hardware support required to implement PMAôs:

Á That support remote attestation

Á That support state continuity

Á That do not need software in the TCB

Research challenges ahead

Á How do we offer higher-level abstractions for these low-level security
architectures?

Á Key idea: maintain the modularity properties of source code at machine
code level by secure compilation.

Á How do we provide assurance of the correctness of the protected
module itself?

Á These modules might be small enough to be amenable to formal
verification

This type of work may lift

self -protection to the next level

23/02/2015 SecAppDev 2015

Illustration 3:

Amusa

Access control middleware for

multi -tenant SaaS applications

23/02/2015 SecAppDev 2015

Goal

23/02/2015

ÁCombine policies securely

ÁEnforce at run-time

SecAppDev 2015

Three -layered access control mgmt

23/02/2015 SecAppDev 2015

Logical architecture

23/02/2015 SecAppDev 2015

STAPL

The Simple Tree -structure

Attribute -based Policy Language

23/02/2015 SecAppDev 2015

A note on the relative ease

of specifying policies

23/02/2015 SecAppDev 2015

Performance evaluation

23/02/2015 SecAppDev 2015

