
Application Security

Trends and Challenges

SecAppDev 2015

Wouter Joosen

iMinds- DistriNet, Department of Computer Science, KU Leuven
February 23, 2015

Trends & Context

23/02/2015 SecAppDev 2015

Technology Trends

23/02/2015

 [1/3] Integration of software in the “physical
world”
 CPS – Cyber Physical Systems

 IoT – Internet-of-Things

 Computational capacity is omnipresent

 Example:
 TRANSITION, From ad-hoc code development to code

reuse through middleware for networked embedded
control systems

SecAppDev 2015

Technology Trends [2/3]

23/02/2015

 Intelligence, relevant data all over the
place….
 Context-aware computing unfolding beyond location and

profile…
 Strong dependencies between sensing equipment, data

processing entities and storage platforms
 Computational capacity is omnipresent, so is analytics…

 Example:
 CAPRADS, A Context-Aware Platform for RApid

Decision Support

SecAppDev 2015

Technology Trends [3/3]

23/02/2015

 Cloud Computing (the trivial one)
 Ultimately determining the delivery model of software

and services…
 Flexible “software-defined” architectures to deal with

rapid change, upgrading, reconfiguration, scaling etc.
 (But how about the attack surfaces?)

 Examples
 DeCoMAdS: Deployment and Configuration Middleware

for Adaptive Software-as-a-Service.
 (𝐷𝑀𝑆)2: Decentralized Data Management and Migration

for Software-as-a-Service

SecAppDev 2015

Application Development today

23/02/2015

 Despite all technology trends…..

AGILITY

SecAppDev 2015

Application Security

23/02/2015

 Many technologies are available

 Some still being developed, but on the
horizon

 Yet other are subject to a strategic
investment (Still R&D)

SecAppDev 2015

Available?

23/02/2015

 Dynamic Application Security Testing (DAST)

 …Static Application Security Testing (SAST)

 SIEM (Security Incident and event
management)

 … Context-aware security (e.g. credentials that
are requested/presented can depend on
location).

 etc.

SecAppDev 2015

Note: Both development support

and run time services/facilities

to be integrated…

23/02/2015 SecAppDev 2015

Following soon

23/02/2015

 Mobile application security testing

 Web application firewalls

 Professional Services?

 Application Security as-a-service?

SecAppDev 2015

Many sources confirm …

E.g. market analysts such as Gartner, Forrester etc.

23/02/2015 SecAppDev 2015

Some of the heavy lifting

23/02/2015

 DevOps & Security

 Protected Mobile Browsers

 (Runtime) Application Self-Protection

… and even further…

SecAppDev 2015

Illustration 1:

Isolating and Restricting Client-Side

JavaScript

(towards a secure browser)

Featuring the PhD thesis of Dr. Steven Van Acker

January 6, 2015

Where to fix the problem?

PuppyShelter.com EvilSkeletor.comVisitor

1. JavaScript subsets and
rewriting

2. Modifying the browser
3. Working with existing

tools

23/02/2015 SecAppDev 2015

Where to fix the problem?

PuppyShelter.com EvilSkeletor.comVisitor

1. JavaScript subsets and
rewriting

23/02/2015 SecAppDev 2015

JavaScript subsets and rewriting

PuppyShelter.com EvilSkeletor.comVisitor

 Main idea: analyze JavaScript before executing it, rewriting if
necessary

 Examples: Caja, FBJS, ADsafe, BrowserShield, …

 Unfortunately:

 Analyzing JavaScript is difficult. Using a JavaScript subset
makes it easier but requires effort from third-party

 Rewriting JavaScript changes architecture of the Web

23/02/2015 SecAppDev 2015

Where to fix the problem?

PuppyShelter.com EvilSkeletor.comVisitor

2. Modifying the browser

23/02/2015 SecAppDev 2015

PuppyShelter.com EvilSkeletor.comVisitor

BEEP, ConScript, WebJail, AdSentry, …

Modifying the browser

23/02/2015 SecAppDev 2015

WebJail: Least-privilege Integration of

Third-party Components in Web Mashups

Steven Van Acker, Philippe De Ryck, Lieven Desmet, Frank Piessens, Wouter Joosen
ACSAC 2011

23/02/2015 SecAppDev 2015

WebJail: main idea

 Restrict sensitive JavaScript functionality in the DOM of
an iframe

 An advice function intercepts calls to a DOM function
and mediates access

 All access-paths go through the advice function

 Enforced in the browser, advice is locked away safely

23/02/2015 SecAppDev 2015

WebJail: policies

 Easy to use policy language

 All JavaScript functionality divided into 9 categories:
 DOM Access
 Cookies
 External communication
 Inter-frame communication
 Client-side storage
 UI and rendering
 Media
 Geolocation
 Device access

{
"framecomm" : "yes",
"extcomm" : ["google.com", "youtube.com"], "device"
: "no”

}

23/02/2015 SecAppDev 2015

WebJail: architecture

23/02/2015 SecAppDev 2015

WebJail: conclusion

 WebJail is a viable JavaScript sandbox
 Full mediation

 Fast

 Unfortunately:
 Deploying a browser modification to all browsers on

the Web is hard

 “Just get the modification adopted by W3C so all
browsers implement it”  not so easy…

23/02/2015 SecAppDev 2015

Where to fix the problem?

PuppyShelter.com EvilSkeletor.comVisitor

3. Working with

existing tools

23/02/2015 SecAppDev 2015

JSand: Complete client-side sandboxing of

third-party JavaScript without browser

modifications.

Pieter Agten, Yoran Brondsema, Steven Van Acker, Phu Phung, Lieven Desmet, Frank
Piessens

ACSAC 2012

23/02/2015 SecAppDev 2015

JSand: object-capability env.

 Object capability environment:
 All functionality is encapsulated in objects

 References to those objects can not be forged

 Without reference to a certain object, there is no access
to its functionality

 E.g. window.alert()
 alert is a property of the window object

 Without access to the window object, alert() can not be
used

 Secure ECMAScript is object-capability safe
 Subset of JavaScript strict mode

23/02/2015 SecAppDev 2015

JSand: Under the hood

 Download third-party script directly to browser

 Load script in isolated object-capability
environment using Google’s Secure ECMAScript

 Enable access to outside using membrane around
DOM
 Policy determines permitted operations

3rd party

JavaScript

Embedding page

J
S

a
n
d

D
O

M

23/02/2015 SecAppDev 2015

JSand: Conclusion

 JSand is also a viable sandboxing solution
 Full mediation

 Works out-of-the-box on modern browsers

 Unfortunately:
 Reusing functionality that was not intended for

sandboxing results in unwanted performance hit

23/02/2015 SecAppDev 2015

Observations

 There is no silver bullet (yet)

 Reusing currently standardized
functionality is not optimal
 E.g. performance overhead

 Specialized JavaScript sandboxing
functionality is required
 Proof of concept as browser modification

 But in long run, functionality must be standardized

23/02/2015 SecAppDev 2015

Illustration 2:

Security Primitives for

Protected Module Architectures

Featuring the PhD thesis of Dr. Raoul Strackx

December 17, 2014

Emerging technology: PMA’s

 Protected Module Architectures:
 Low-level security architectures that implement an “inverse

sandbox”: protect a module from a buggy or malicious environment

• E.g. run code securely even on top of a kernel infected with malware

23/02/2015 SecAppDev 2015

Emerging technology: PMA’s

 Implementations
 Pioneering work by Parno et. al. at CMU: the Flicker system

• https://sparrow.ece.cmu.edu/group/flicker.html

• Bryan Parno was awarded the ACM 2010 doctoral thesis award for this work

 Follow-up implementations, including several from iMinds:

• Fides (Strackx et al, CCS 2012), Sancus (Noorman et al., Usenix Sec
2013)

 INTEL publicly announced their implementation quite a while
ago (snclaves in SGX)
• http://software.intel.com/en-us/intel-isa-extensions#pid-19539-1495

https://sparrow.ece.cmu.edu/group/flicker.html
http://software.intel.com/en-us/intel-isa-extensions

Protected module architecture

(simplified)

 Modules consist of:
 A code section, with designated entry points

 A data section (also containing control data)

 The PMA:
 Controls creation/deletion of

modules

 Enforces a PC-based access
control model

Some Achievements

 How can Protected Module Architectures efficiently, securely and
reliably persist state?

 What is the minimal hardware support required to implement PMA’s:

 That support remote attestation

 That support state continuity

 That do not need software in the TCB

Research challenges ahead

 How do we offer higher-level abstractions for these low-level security
architectures?

 Key idea: maintain the modularity properties of source code at machine
code level by secure compilation.

 How do we provide assurance of the correctness of the protected
module itself?

 These modules might be small enough to be amenable to formal
verification

This type of work may lift

self-protection to the next level

23/02/2015 SecAppDev 2015

Illustration 3:

Amusa

Access control middleware for

multi-tenant SaaS applications

23/02/2015 SecAppDev 2015

Goal

23/02/2015

 Combine policies securely

 Enforce at run-time

SecAppDev 2015

Three-layered access control mgmt

23/02/2015 SecAppDev 2015

Logical architecture

23/02/2015 SecAppDev 2015

STAPL

The Simple Tree-structure

Attribute-based Policy Language

23/02/2015 SecAppDev 2015

A note on the relative ease

of specifying policies

23/02/2015 SecAppDev 2015

Performance evaluation

23/02/2015 SecAppDev 2015

Summary

23/02/2015

 Focus on multi-tenant IAM

 Main technology:
 policy-based access control with

attribute-based tree-structured policies

 STAPL: policy language (DSL)
• suited for extending with new technologies

 .. Clearly WIP.

SecAppDev 2015

Business Intermezzo

23/02/2015

 Attitude of the market
 Security Provider side: point solutions and network level

technology taking a lot of spotlight.

 Software Vendor (ISV side): managing performance
indicators (e.g. #bugs found) may not truly support
application security

 Agility remains obviously crucial….

 So is there any room for Secure SDLC?

SecAppDev 2015

23/02/2015 SecAppDev 2015

MUST consider:

4 angles

(1) Life Cycle Support

(not XP)

23/02/2015 SecAppDev 2015

(2) Expressive Power

Remember policy languages…

23/02/2015 SecAppDev 2015

(3) Composition &

Transformation

Automation is crucial for cost purposes and robustness…

23/02/2015 SecAppDev 2015

(4) Dev Ops…

Deployment (configurations etc.) must/will become an
integrated part of software

23/02/2015 SecAppDev 2015

Illustration 1: RE

Requirements Engineering

23/02/2015 SecAppDev 2015

Privacy threats in

software architectures

23/02/2015 SecAppDev 2015

Development lifecycle

Requirements Architecture Implementation

• white

• sleek design
• some storage spaceK

I
T

C
H

E
N

S
O

F
T

W
A

R
E

23/02/2015 SecAppDev 2015

LINDDUN Threat modeling

 Eliciting threats
 Related to Linkability, Identifiability, Non-repudiation,

Detectability, Disclosure of information, Unawareness,
Non-compliance

 Model of the system highlighting the assets
 Components (processing, data) and info flows

 Finding flaws that could lead to attacks

 “Not unlike” Microsoft’s STRIDE

23/02/2015
SecAppDev 2015

LINDDUN

core steps

MUC 05:

Summary: A researcher or other insider with malicious intent links PHR data

(or user data)

Primary mis-actor: unskilled insider (authenticated user, e.g. researcher)

Basic path:
bf1. The misactor performs a set of targeted queries on the PHR data or user data

store and retrieves very detailed results

bf2. The misactor links the results of the queries together (e.g. based on
medication which is usually combined, medical conditions which occur
together, or pseudo-identifiers like street and age)

Consequence: By combining the query results, the misactor has access to

more information about the patient than anticipated

Reference to threat tree node(s): L_ds2, L_e2

Parent threat tree(s): L_ds, I_ds

DFD element(s): 5.1 PHR data, 5.2 user data

Remarks:
r1. This threat can be used as precondition for the identifiability threat at the data

store (T03 - Identifying a patient from his PHR data)

1. User

2.
Portal

3.
Service

4. Social network data

Threat

target

L I N D D U N

DS Social network

db
X X X X X X

DF User data

stream (user-

portal)
X X X X X X

Service data

stream portal-

service)
X X X X X X

DB data tream

(service – DB)
X X X X X X

P Portal X X X X X X

Social etwork

service
X X X X X X

E User X X X

MUC 05:

Summary: A researcher or other insider with malicious intent links PHR data

(or user data)

Primary mis-actor: unskilled insider (authenticated user, e.g. researcher)

Basic path:
bf1. The misactor performs a set of targeted queries on the PHR data or user data

store and retrieves very detailed results

bf2. The misactor links the results of the queries together (e.g. based on
medication which is usually combined, medical conditions which occur
together, or pseudo-identifiers like street and age)

Consequence: By combining the query results, the misactor has access to

more information about the patient than anticipated

Reference to threat tree node(s): L_ds2, L_e2

Parent threat tree(s): L_ds, I_ds

DFD element(s): 5.1 PHR data, 5.2 user data

Remarks:
r1. This threat can be used as precondition for the identifiability threat at the data

store (T03 - Identifying a patient from his PHR data)

MUC 04: linking data in DS

Summary: A researcher or other insider with malicious intent links PHR data

(or user data)

Primary mis-actor: unskilled insider (authenticated user, e.g. researcher)

Basic path:
bf1. The misactor performs a set of targeted queries on the PHR data or user data

store and retrieves very detailed results

bf2. The misactor links the results of the queries together (e.g. based on
medication which is usually combined, medical conditions which occur
together, or pseudo-identifiers like street and age)

Consequence: By combining the query results, the misactor has access to

more information about the patient than anticipated

Reference to threat tree node(s): L_ds2, L_e2

Parent threat tree(s): L_ds, I_ds

DFD element(s): 5.1 PHR data, 5.2 user data

Remarks:
r1. This threat can be used as precondition for the identifiability threat at the data

store (T03 - Identifying a patient from his PHR data)

L I N D D U N

Data
store

X X X X X X

Data
flow

X X X X X X

Process X X X X X X

Entity X X X

1. DFD 2. map

3. elicit

Model-based

Knowledge-based

A privacy threat analysis framework: supporting the elicitation and fulfillment of privacy requirements
M. Deng, K. Wuyts, R. Scandariato, B. Preneel, W. Joosen, in Requirements Engineering 16 (1), 3-32, 2011P

U
B 23/02/2015 SecAppDev 2015

Referenced by independent researchers

LINDDUN in the wild

In privacy talks

Applied in European projects

23/02/2015 SecAppDev 2015

Ad Interim - Summary of

evaluation

 Advantages
 Acceptable correctness rate

 Relatively easy to learn and apply

 LINDDUN threat tree catalog is useful

 Good coverage of privacy threats

 Room for improvement

S
tu

d
y
 1

 +
 2

R
e

q
s
 +

 a
rc

h
i

S
tu

d
y
 3

e

x
p

e
rt

s

23/02/2015 SecAppDev 2015

Illustration 2: Source Code

analysis – vulnerability

prediction

23/02/2015 SecAppDev 2015

impact of software quality on security

 Specialists: verification technology
 Direct assessment (A)

 For any developer
 Indirect assessment (B)

23/02/2015 SecAppDev 2015

<A> VeriFast

Software Quality @ Development time

VeriFast

VeriFast

C or Java source
code

Specification Proof hints

"0 errors found"

Guarantees that program
● has no buffer overflows
● has no integer overflows
● has no data races
● uses APIs correctly
● satisfies specification

Symbolic execution
trace showing error

or

User can step through trace and
inspect symbolic states

~ 1s

23/02/2015 SecAppDev 2015

VeriFast: verified programs -

cases

● Fine-grained concurrent data structures
● Functional correctness

● JavaCard applets (incl. for Belgian eID card)
● Crash-freedom, safe API usage

● Linux device drivers
Memory safety, data-race-freedom, safe API usage

● Embedded software (for Telefonica home
gateway)

● Memory safety, data-race-freedom, safe API usage

● Cryptographic protocol implementations (RPC,
Needham-Schroeder-Lowe)

23/02/2015 SecAppDev 2015

 Fault Prediction, based

on

Text Mining

Software Quality @ Development time

Research question

Can we build a (good quality) classifier that
predicts vulnerable components

in C++ applications?

Idea: Analyze the tokens in each
component's code (e.g., if, while, variable

names) and use these as predictors

23/02/2015 SecAppDev 2015

Prediction in the future

v 4.0 v 5.0 v 12.0
...

Build

prediction model

(using 1 version)

Test performance of

prediction model

(in each of the following 8 version)

23/02/2015 SecAppDev 2015

Benchmark

● Find at least 80% of the components
containing vulnerabilities (cost) by inspecting
at most 20% of the application components
(benefit)

23/02/2015 SecAppDev 2015

Results

● We exceedingly meet the benchmark

● For all the “future” versions

● Better than best results in the state-of-the-art
(i.e., Shin et al., TSE 37(6), 2011)

23/02/2015 SecAppDev 2015

And now…

Reaching out!

Which problems are perceived to be of the highest priority?

We start an anonymous survey of ISV’s in Flanders and beyond

(Q2 2015)

23/02/2015 SecAppDev 2015

Challenges Summarized

Full life cycle support must become agile, but it remains high
priority. (Part 2)

This cannot be achieved without managing the concept of risk

New techniques can and should contribute to reducing the
overall cost.

This must be pursued while dealing with all other trends of
these interesting times….(Part 1)

23/02/2015 SecAppDev 2015

Thank You!

23/02/2015 SecAppDev 2015

Thank them !

Jasper Bogaerts, Maarten Decat, Ming Deng, Philippe De Ryck,

Lieven Desmet, Thomas Heyman, Aram Hovsepyan, Bart Jacobs,

Bert Lagaisse, Fabio Massacci, Sam Michiels, Jasper Moeys, Frank

Piessens, Bart Preneel, Davy Preuveneers, Riccardo Scandariato,

Steven Van Acker, Dimitri Van Landuyt, James Walden, Kim Wuyts,

Koen Yskout, …

23/02/2015 SecAppDev 2015

