Break ‘em and Build ‘em Web

SecAppDev 2015
Ken van Wyk, @KRvW

Leuven, Belgium
23-27 February 2015

KRvW Associates, LLC
Ken van Wyk, ken@krvw.com, @KRvW

Copyright© 2015 KRvW Associates, LLC

e SecureApplication

- Development
o cappdev

Part | - Break ‘em!

Copyright© 2015 KRvW Associates, LLC

Module flow

Description of the flaw and how 1t 1s exploited

Exercise to attack the flaw (for most)
We’ll let you try to figure each exercise out yourself

Then nstructor will demonstrate the attack

We’ll also briefly discuss mitigations, but will
come back to those 1in 2nd half of class

Copyright© 2015 KRvW Associates, LLC

The tools we’'ll use

OWASP tools (freely available)

Firefox web browser
With FoxyProxy plug-in

WebScarab -- a web application testing proxy
ZAP is also installed in our VM

WebGoat -- a simple web application containing
numerous flaws and exercises to exploit them
Runs on (included) Apache Tomcat J2EE server

Copyright© 2015 KRvW Associates, LLC

Setting up your virtual machine

Install VirtualBox on your system from the USB or
download provided

You will need administrative privileges to install 1t 1f 1t
isn’t already there
From the File menu, import the appliance prepared
for this class

You may need to adjust the memory allocated for the VM
(default 1s 2 Gb)

You may need to tweak network settings and/or graphics
hardware settings — like 3D and 2D acceleration

Copyright© 2015 KRvW Associates, LLC

Setting up WebGoat

We’ll boot from the provided Virtual Machine

Class software pre-installed, but run from command line
First cd into ~/Desktop/WebGoat-next

To compile and run, type -

mvn clean tomcat:run-war

Launch Firefox and point to server from
bookmark

http://localhost:8080/WebGoat/attack

At this point, WebGoat is running, but you’ll still
need a testing proxy to perform some attacks

Copyright© 2015 KRvW Associates, LLC

Next, set up WebScarab

Run WebScarab
Default listener runs on TCP port 8008

Ensure listener i1s running within WebScarab

Configure proxy

Use FoxyProxy 1n Firefox and select WebScarab

This configures browser to proxy traffic on TCP/8008 on 127.0.0.1
(localhost)

Connect once again to http://localhost/WebGoat/attack

Copyright© 2015 KRvW Associates, LLC

WebGoat tips

Report card shows overall progress

Don’t be afraid to use the “hints” button
Show cookies and parameters can also help

Show java also helpful

None of these are typical on real apps...
Learn how to use it
Fabulous learning tool

Copyright© 2015 KRvW Associates, LLC

Familiarizing Goat and Scarab

WebGoat WebScarab
Do “Web Basics” Turn on intercepts
€XErcise Requests
Try Hints and other Responses
buttons Explore and experiment
Look at report card Parsed vs. raw view
Try editing a request
Modify parameters

Add/omit parameters

Copyright© 2015 KRvW Associates, LLC

A word of warning on ethics

You will see, learn, and perform real attacks against
a web application today.

You may only do this on applications where you
are authorized (like today’s class).

Violating this 1s a breach of law 1n most countries.
Never cross that ethical “line 1n the sand”!

Copyright© 2015 KRvW Associates, LLC

10

OWASP Top-10 (2013)

Al - Injection
A2 - Broken

authentication and
session management

A3 - Cross-site scripting
A4 - Insecure direct

object reference

A5 - Security
misconfiguration

Copyright© 2015 KRvW Associates, LLC

A6 - Sensitive data
exposure

A7 - Missing function
level access control

A8- Cross site request
forgery (CSRF)

A9 - Using components
with known
vulnerabilities

A10 - Unvalidated
redirects and forwards

11

#1 Injection flaws

Occurs when
“poisonous” data causes
software to misbehave

Most common 1s SQL
injection
Attacker taints input data
with SQL statement

SQL passes to SQL
interpreter and runs

Data “jumps” from data
context to SQL context

Copyright© 2015 KRvW Associates, LLC

Consider the following
input to an HTML form
Form field fills in a

variable called
“CreditCardNum”™

Attacker enters

(4

(4

‘or 1=1 --

What happens next?

12

SQL basics

Attacker should
understand SQL query
syntax

Integer comparisons

“ orl=1..”

String comparisons

“..oor‘1’=1...”"

Copyright© 2015 KRvW Associates, LLC

SQL 1njection attacks
can become complex

Attacker with in-depth
knowledge of SQL can
have a “field day”

13

SQL string

Injection exercise

A String SQL Injection - Microsoft Internet Explorer,

File Edit View Favorites Tools Help

e Back ~ () ‘ﬂ IEL] 0|)) Search < Favorites &) - &2 [=H ‘:“
Address | &] http:{flocalhost/WebGoat/attack?Screen=588menu=1200 v Go Links
Logout Q s
String SQL Injection
OWASP WebGoat V5.2
‘I,_r'fl'_":i'?_'fi:‘t":'” Solution Yideos Restart this Lesson
Lenera
ntrol Flaws SQL injection attacks represent a serious threat to any database-driven site. The methods
behind an attack are easy to learn and the damage caused can range from considerable to
complete systern cornpromise. Despite these risks, an incredible number of systems on the
uffer internet are susceptible to this form of attack.
>ode Q . I . . .
l Not only is it a threat easily instigated, it is also a threat that, with a little common-sense and
cripting (forethought, can easily be prevented.
Improper E __1":;_ dli It is always good practice to sanitize all input data, especially data that will used in 0OS
Mpropsr lf"'r andiing command, scripts, and database queiries, even if the threat of SQL injection has been
Injection Flay prevented in some other manner.
Command Injection
Blind SQL Injection General Goal(s):
) The form below allows a user to view their credit card numbers. Try to inject an SQL string
Log Spoofing that results in all the credit card numbers being displayed. Try the user name of 'Smith'.
XPATH Injection
LAB: SQL Injection r m
Stage 1:5tring SQL Injection Enter your last name: »YOU(Name .
Stage Z: Parameterized
Query #1 SELECT * FROM user_data WHERE last_name = 'Your Name'
Stage 3: Numeric SOL
Injection Mo results matched. Try Again.
Stage 4: Parameterized
Query 42
String SQL Injection
Database Backdoors
SP Foundation | Project WebGoat | Report Bug
v

&l

&J Local intranet

Copyright© 2015 KRvW Associates, LLC

14

SQL integer injection exercise

2} Numeric SOL Injection - Microsoft Internet Explorer

File Edit View Favorites Tools
O Back ~) ‘ﬂ ﬂ N) search < Favorites &4 - : ."‘i
4 N W/ Z 52 = %
Address | &] http:{flocalhost/WebGoat/attack?Screen=678menu=1200 v Go Links
Logout 0 25
J Numeric SQL Injection
OWASP WebGoat V5.2 I <| Hints > { k |) . I
f,?'f'r"ij'f_'fi:'t"i'r' solution Yideos Restart this Lesson
Lenera
SQL injection attacks represent a serious threat to any database-driven site. The methods
behind an attack are easy to learn and the damage caused can range from considerable to
complete systern cornpromise. Despite these risks, an incredible number of systems on the
uffer internet are susceptible to this form of attack.
>ode Q . I . . .
:.,r Not only is it a threat easily instigated, it is also a threat that, with a little common-sense and
Cro cripting (forethought, can easily be prevented.
IDE'—"_-"J cif_ E __1"35_ dli It is always good practice to sanitize all input data, especially data that will used in 0OS
Mpropsr lf"'r andiing command, scripts, and database queiries, even if the threat of SQL injection has been
Injection Flay prevented in some other manner.
Command Injection
Blind SQL Injection General Goal(s):
Numeric SQL Injection
) The form below allows a user to view weather data. Try to inject an SQL string that results in
Log Spoofing all the weather data being displayed.
XPATH Injection
LAB: SQL Injection X N
) . Select your local weather station: | Columbia v
Stage 1:5tring SQL Injection .
Stage Z: Parameterized
Query &1 -GD
Stage 3: Numeric SOL
Injection
stage 4: Parameterized SELECT * FROM weather_data WHERE station = [station]
Query 42
String SQL Injection
Database Backdoors
Foundation | Project W Report Bug
v
&J Local intranet

Copyright© 2015 KRvW Associates, LLC

15

Injection issues and remediation

Passing unchecked data

to any interpreter 1s
dangerous

Filtering out dangerous
data alone can be
problematic

Copyright© 2015 KRvW Associates, LLC

SQL 1njection
remediation

Use static strings
Parse for provably safe
input

Not a good 1dea
Parameterized queries

Via PreparedStatement

Stored procedures

Safe, but SQL engine
dependent

16

What about input validation?

If we’re using PreparedStatement, do we have to
worry about input validation?

Of course!
Consider other data payloads, like XSS

Copyright© 2015 KRvW Associates, LLC

17

Other injection dangers

SQL 1njection 1s
common but others
exist

XML

LDAP

Command shell
Comma delimited files
Log files

Copyright© 2015 KRvW Associates, LLC

Context 1s everything

Must be shielded from
presentation layer

Input validation will
set you free

Positive validation 1s
vital

18

Examples — How NOT to...

//Make connection to DB

Connection connection = DriverManager.getConnection(DataURL,
LOGIN, PASSWORD);

String Username = request.getParameter("USER"); // From HTTP
request

String Password = request.getParameter("PASSWORD"); // same

int iUserID = -1;

String sLoggedUser = ;

String sel = "SELECT User id, Username FROM USERS WHERE Username

= +Username + "' AND Password = '" + Password + :

Statement selectStatement = connection.createStatement ();
ResultSet resultSet = selectStatement.executeQuery(sel);

Copyright© 2015 KRvW Associates, LLC

19

Examples — PreparedStatement

String firstname = req.getParameter("firstname");
String lastname = reqg.getParameter("lastname");

String query = "SELECT id, firstname, lastname
FROM authors WHERE forename = ? and surname = ?";

PreparedStatement pstmt =
connection.prepareStatement(query);

pstmt.setString(1, firstname);
pstmt.setString(2, lastname);
try

{

ResultSet results = pstmt.execute();

}

Copyright© 2015 KRvW Associates, LLC

20

#2 Broken authentication and
session management (was #3)

HTTP has no inherent Mistakes are common

sess1on management Credentials transmitted
And only rudimentary unencrypted
authentication Stored unsafely

Every developer has to Passed in GET (vs.

invent (or reuse) one POST)

Session cookies revealed
or guessable

Copyright© 2015 KRvW Associates, LLC

21

Authentication design patterns

Mechanisms
Basic/digest
Forms
Certificate

Forms (most often)

Username/password
HTTP parameters

Password hashed
Sent to auth service
Validate or not

Copyright© 2015 KRvW Associates, LLC

Authentication services
Centralized

Federated
Role based

Data stores
XML, LDAP, SQL, text file

Certificates
Strong, but rarely used

22

Basic authentication exercise

File Edit View

@ Back ~

Favorites

‘ﬂ ﬁ) /A) search <

Address g‘] http:{flocalhost/WebGoat/attack?Screen=259&menu=500&Restart=259

Tools

Help

v Go Links >

Logout 0

Basic Authentication

Introduction

General

Adrnin Fun
Challenge

Password Strength
Forgot Password

Basic Authentication

Multi Level Login 1
Multi Level Login 2

rflows

Buffer
Code Quality
Concurrency

Communic

nfiguration
rage

ameter Tampering
anagement Flaws

ons

Solution Yideos Restart this Lesson

Basic Authentication is used to protect server side resources. The web server will send a 401
authentication request with the response for the requested resource. The client side browser
will then prompt the user for a user name and password using a browser supplied dialog box.
The browser will basef4 encode the user name and password and send those credentials
back to the web server. The web server will then validate the credentials and return the
requested resource if the credentials are correct. These credentials are autormnatically resent
for each page protected with this mechanism without requiring the user to enter their
credentials again.

General Goal(s):

For this lesson, your goal is to understand Basic Authentication and answer the questions
below.

what is the name of the authentication header:

what is the decoded value of the authentication header: '

SP Foundation | Project WebGoat | Report Bug

@ Done

&J Local intranet

Copyright© 2015 KRvW Associates, LLC

23

Spoofing auth cookie exercise

2 Spoof an Authentication Cookie - Microsoft Internet Explorer

File Edit View Favorites Tools Help

@Back - & ‘ﬂ ﬁ) /A) Search < Favorites {04 - 2 [‘:“

Address | &] http:{flocalhost/WebGoat/attack?Screen=2618menu=1700 v Go Links >

Logout 0

Spoof an Authentication Cookie

Introduction

General

uffer
“ode Q

Cro
Denial of
Improper Error Handling
n Flaws
ommunicat
figuration
rage
Tampering
Management Flaws
Hijack a Session

Spoof an Authentication Cookie

Session Fixation

Web Services
Admin Fun
Challenge

Solution Yideos Restart this Lesson

Login using the webgoat/webgoat account to see what happens. You may also try

aspect/aspect. When you understand the authentication cookie, try changing your identity to
alice.

Sign In

Please sign in to your account. See the OWASP admin if you do not have
an account.

*Required Fields

*User Name:

*Password:

ASPECT

Application Security Specialists

SP Foundation | Project WebGoat | Report Bug

@ Done

&J Local intranet

Copyright© 2015 KRvW Associates, LLC

Session management basics

Web contains no
inherent session
management

Unique ID assigned to
each session on server

ID passed to browser

and returned 1n each
GET/POST

JSESSIONID for J2EE

Copyright© 2015 KRvW Associates, LLC

Once authenticated,
session token 1s as
powerful as valid
username/password

Must be rigorously
protected

Confidential
Random
Unpredictable
Unforgeable

25

A word about setting cookies

Set-Cookie: name=VALUE, domain=DOMAIN NAME;
expires=DATE, path=/PATH/; secure; httponly

Set via HTTP headers
Only name field 1s required

Secure attribute instructs client to SSL encrypt
RFC 2965 still allows the client significant leeway

No guarantee for confidentiality, but still a good practice

Httponly attribute prevents scripts from accessing
cookie (e.g., Javascript in XSS attacks)

Copyright© 2015 KRvW Associates, LLC

26

Session management pitfalls

Exposing session token ~ Not resetting session

Session fixation token
Custom tokens Session hijacking and
replay

CSRF susceptible

Copyright© 2015 KRvW Associates, LLC 27

Session fixation

2 Session Fixation - Microsoft Internet Explorer, @@@
I

File Edit View Favorites Tools Help
P~ A o) == - 2
e Back ~ \ﬂ M -I\J P Search < ¢ Favorites @7 - &g = ‘3
Address | @] http:fflocalhost/WebGoat{attack?Screen=16&menu=1700 v . Go Links *
Logout 0 e
Session Fixation
Solution Yideos Restart this Lesson
Control Flaws
urity STAGE 1: You are Hacker Joe and you want to steal the session from Jane. Send a prepared
Authentication Flaws email to the victim which looks like an official email from the bank. A template message is
f erflows prepared below, you will need to add a Session ID (SID) in the link inside the email. Alter the
link to include a SID.
You are: Hacker Joe
Denial of S
Improper Err Mail To: jane.plane@owasp.org
Injection Flaws Mail E) drmin@webgoatfi il
ommunication ail From: admin@webgoatfinancial .com
cure Configuration Title: Checkyour account
orage L |
; r-'1,1-r|—‘?rn*p|f,:|::gFl'm- <hb>Dear MS. Plane

During the last week we had a few ~
. '_ _':_('?g" ne e problems with our database. We have received many complaints
Hijack 3 Session regarding incorrect account details. Please use the following
.E oof an Authentication link to werify your account data:

<center><a
Cookie href=http://localhost/WebGoat/attack?Screen=16&menu=1700> Goat
Session Fisxation Hills Financial</a»</center>

We are sorry for the any
Web i inconvenience and thank you for your cooparation.

Your
webD Services
adrin Functions Goat Hills Financial Team</h><center>

<img |
Challenge =
alenas Send Mail
Created by: Reto Lippuner, Marcel Wirth
OWASP Foundation | Project WebGoat | Report Bug ™
€] Done &J Local intranet

Copyright© 2015 KRvW Associates, LLC

28

#3 Cross site scripting ("XSS")
(Was #2)

Can occur whenever a Consider this user
user can enter data into input
a web app <script>

alert(document.cookie)

Consider all the ways a
user can get data to the

</script>

Where can 1t happen?

“PP . ANY data input
When data 1s
represented in browser,
“data’ can be Two forms of XSS
dangerous Stored XSS

Reflected XSS

Copyright© 2015 KRvW Associates, LLC

29

Stored XSS

Attacker inputs script
data on web app

Forums, “Contact Us”
pages are prime
examples

All data input must be
considered

Copyright© 2015 KRvW Associates, LLC

Victim accidentally
views data

Forum message, user
profile, database field

Can be years later

Malicious payload lies
patiently in wait

Victim can be anywhere

30

Stored XSS exercise

2} Stored XSS Attacks - Microsoft Internet Explorer Q@@
0

File Edit View Favorites Tools Help @

eBack >) ‘ﬂ @) search \;’ Favorites %) - &z = ‘:‘

Address | &] http:{flocalhost/WebGoat/attack?Screen=508menu=900 v . Go Links
Logout Q s

Stored XSS Attacks

Solution Yideos Restart this Lesson

It is always a good practice to scrub all input, especially those inputs that will later be used
as parameters to OS commands, scripts, and database queries. It is particularly important
for content that will be permanently stored somewhere in the application. Users should not be
able to create message content that could cause another user to load an undesireable page
or undesireable content when the user's message is retrieved.

e Scripting (
Phishing with X55 Title: E
LAB: Cross Site Scripting Message: |
Stage 1:Stored XS5 1
|
|
|
|
|
L

Stage 2: Block Stored x55
using Input Yalidation

Stage 3: Stored X535
Revisited

Stage 4: Block Stored X55
using Output Encoding

Stage 5: Reflected X535

Stage 6: Block Reflected X535
Stored X55 Attacks

Cross Site Request Forgery
(CSRF)

Reflected X55 Attacks
HTTPOnly Test ASPECT

Cross Site Tracing (5T Application Security Specialists
Attacks

Message List

Denial of S
Improper E
Injection Fl

& &J Local intranet

OWASP Foundation | Project WebGoat | Report Bug

Copyright© 2015 KRvW Associates, LLC

Reflected XSS

Attacker inserts script
data into web app

App immediately
“reflects” data back

Search engines prime
example

“String not found”

Copyright© 2015 KRvW Associates, LLC

Generally combined
with other delivery
mechanisms

HTML formatted spam
most likely

Image tags containing
search string as HTML
parameter

Consider width=0 height=0
IMG SRC

32

Reflected XSS exercise

File Edit View Favorites Tools Help

@Back - & ‘ﬂ IEL] D |)) Search 5

Address | &] http:{flocalhost/WebGoat/attack?Screen=498menu=900 v Go Links >
Logout Q s

Reflected XSS Attacks

OWASP WebGoat V5.2
‘I,_r'fl'_":i'?_'fi:‘t":'” Solution Yideos Restart this Lesson
Lenera
ntrol Flaws For this exercise, your mission is to come up with some input containing a script. You have to

try to get this page to reflect that input back to your browser, which will execute the script
and do something bad.

uffer
>ode Q

y Shopping Cart
Phishing with X55 Shopping Cart Items -- To Buy | pjce Quantity Total
LAB: Cross Site Scripting

Studio RTA - Laptop/Reading Cart [
Stage 1: Stored XS5 with Tilting Surface - Cherry 69.99 ;1 | $0.0
Stage Z: Block Stored X55 - r 1
using Input validation Dynex - Traditional Notebook Case 27.99 1 $0.0
itage 3: Stored 53 Hewlett-Packard - Pavilion Notebook []
e with Intel Centrino 1599.99 |1 $0.0
Stage 4: Block Stored X55 Y -
Using Dutput Encoding 3 - Year Performance Service Plan 299,99 |1 $0.0

$1000 and Over
Stage 5: Reflected X535

Stage 6: Block Reflected X535

The total charged to your credit _
Stored XS5 Attacks card: $0.0 _Update Cart

Cross Site Request Forgery
(CSRF)

Enter your credit card number: 4128 32140002 1999

Reflected X5S5 Attacks :

HTTPOnly Test Enter your three digit access code: 111

Cross Site Tracing (X5T
Denial of Service
Improper Error Handling
Injection Flay) v

£&] Done &J Local intranet

Copyright© 2015 KRvW Associates, LLC

XSS issues

Why 1s this #3? Why 1s it such a big
Input validation and deal?
output escaping Highly powerful attack
problems are pervasive Anything the user can

Focus on functional spec

Eradicating it entirely
from an app is tough
work

Copyright© 2015 KRvW Associates, LLC

do, the attacker can do
Take over session
Install malware

Copy/steal sensitive data

34

XSS remediation

Multi-tiered approach
Input validation

Output encoding
(“‘escaping”)

But how?
It’s not so simple

Blocking “<>”,
“<script>”, etc. can lead
to disaster

Copyright© 2015 KRvW Associates, LLC

Strive for positive
input validation, not
negative

Prove something is safe

Beware of
Iinternationalization

Every single iput
Database import, XML

data, the list goes on and
on

35

Code

Regular expression
Processors

Positive validation

Coding guidelines

Safe code patterns

Common libraries and
frameworks

Centrally maintainable

Copyright© 2015 KRvW Associates, LLC

Code reviews should
verify conformance

Consider tools with
custom rule sets

Negative validation
models must be
justified

Often no easier to write

36

Presentation layer input validation

Client-side (Javascript) App server validation
input validation XML config files
Trivially bypassed Regular expression
Not a suitable security processing to verify
control by 1itself fields
Good for usability Positive validation

Instant feedback to user

Copyright© 2015 KRvW Associates, LLC 37

Examples - Javascript

// XSS filter code. takes out coding characters and returns
the rest
function emitSpclChr(nameStrng) {
for(J=0; j<nameStrng.length; j++) {

thisChar = nameStrng.charAt(j);

if (thisChar=="<" || thisChar==">" ||
thisChar=="?" || thisChar=="*" || thisChar=="(" ||
thisChar==")"){

nameStrng=nameStrng.replace(thisChar,"");
J=3-1;
}
}

return (nameStrng);

}
//end XSS

Copyright© 2015 KRvW Associates, LLC

38

Examples - Javascript

<SCRIPT>
regexl=/"[a-2]{3}$/;
regex2=/"[0-91{3}$/;
regex3=/"[a-zA-20-9]*$/;
regex4=/" (one|two|three|four|five|six|seven|eight|nine)s$/;
regex5=/"\d{5}$/;

regex6=/"\d{5} (-\d{4})?S$/;

regex7=/"[2-9]1\d{2}-2\d{3}-2\d{4}s$/;
function validate() {

msg='JavaScript found form errors'; err=0;

if
if
if
if
if
if
if
if

(!regexl.
(!regex2.
(!regex3.
(!regex4.
(!regex5.
(!regexé6.
(!regex7.

(err > 0) alert(msqg);

test (document.
test (document.
test (document.
test (document.
test (document.
test (document.
test (document.

form

form.
form.
form.
form.
form.
form.

else document.form.submit();

}

</SCRIPT>

Copyright© 2015 KRvW Associates, LLC

.fieldl

field2
field3
field4
field5
fieldé6
field?7

.value))
.value))
.value))
.value))
.value))
.value))
.value))

{err+=1;
{err+=1;
{err+=1;
{err+=1;
{err+=1;
{err+=1;
{err+=1;

msg+="'\n
msg+="'\n
msg+="'\n
msg+="'\n
msg+="'\n
msg+="'\n
msg+="'\n

bad
bad
bad
bad
bad
bad
bad

fieldl';}
field2';}
field3';}
field4';}
field5';}
field6';}
field7';}

39

Examples — A bit better

protected final static String ALPHA NUMERIC =
“"Ta-zA-720-9\s.\=-1+S";
// we only want case insensitive letters and numbers

public boolean validate(HttpServletRequest request,
String parameterName) {

boolean result = false;
Pattern pattern = null;
parameterValue = request.getParameter (parameterName);

if (parametervValue != null) {
pattern = Pattern.compile(ALPHA NUMERIC);
result = pattern.matcher (parameterValue).matches();

}return result;
} else

{ // take alternate action }

Copyright© 2015 KRvW Associates, LLC

40

Output encoding

Necessary for safely
outputting untrusted
data

Context 1s vital to
understand

HTML
Javascript
CSS

etc

Copyright© 2015 KRvW Associates, LLC

Encoding scheme
needs to match context
of output stream

Build/acquire an output
encoding library

Different data types

41

Examples — HTML escape

Context

<body> UNTRUSTED DATA HERE </body>

<div> UNTRUSTED DATA HERE </div>
other normal HTML elements

String safe =
ESAPI.encoder () .encodeForHTML (request.get
Parameter (“input”));

Copyright© 2015 KRvW Associates, LLC

42

Examples — HTML attributes

Context

<div attr = UNTRUSTED DATA > content </
div>

<div attr = ‘UNTRUSTED SINGLE QUOTED
DATA‘> content </div>

<div attr = “UNTRUSTED DOUBLE QUOTED

DATA”> content </div>

String safe =
ESAPI.encoder () .encodeForHTMLAttribute

(request.getParameter(“input”));

Copyright© 2015 KRvW Associates, LLC

43

#4 Insecure direct object reference

Architectural flaw 1n
application

(G1ving user access to a
real world object 1s
dangerous

Absolutely will be
tampered

Results can have major
impact

Copyright© 2015 KRvW Associates, LLC

Examples include

Files
User credentials
Payment information

Sensitive application
data or functions

44

Object reference exercise

A Bypass a Path Based Access Control Scheme - Microsoft Internet Explorer

File Edit View Favorites Tools Help

""
e Back ~ () ‘ﬂ IEL] 0|)) search \;’ Favorites %) - &2 [=H ‘:“
Address @ http:fflocalhost{WebGoat/attack?Screen=17&menu=200 v Go Links >
Logout Q s
Solution Yideos Restart this Lesson
Control Flaws The 'guest’ user has access to all the files in the lesson_plans directory. Try to break the
Usi " c | Matri access control mechanism and access a resource that is not in the listed directory. After
SR an e bennl Mati selecting a file to view, WebGoat will report if access to the file was granted. An interesting
Bypass a Path Based Access file to try and obtain might be a file like tomcat/conf/tomcat-users.xml
Control Scheme
LAB: Role Based Access Control Current Directory is: C:\Documents and Settings\Instructor\Desktop\WebGoat-
stage 1: Bypass Business 5.2\tormcat\webapps\WebGoat\lesson_plans
Layer Access Control
stage 7: add Business Choose the file to view: ‘
Layer Access Control AccessContralMatrix htrml S
Stage 3 B!EBSS Data Laxer
Access Control Elac!(DoarsthI)
stage 4 add Dats Layer BQSchuthgntlpatlon.html
Bicess control BlindSglinjection.html
Remote Admin Access BufferOverflow.html
arity ChallengeScreen.html
r ClientSideFiltering.html
ClientSideValidation.html
CommandInjection.html
ConcurrencyCart.html
CrossSiteScripting.html
CSRF.html
DangerousEval html
DBCrossSiteScripting.html
DBSQALlInjection.html N
Viewing file: C:\Docurnents and Settings\Instructor\Desktop\WebGoat-5.2 v
& &J Local intranet

Copyright© 2015 KRvW Associates, LLC

45

Shopping cart direct object

2 Exploit Hidden Fields - Microsoft Internet Explorer,

File Edt View Favortes Tools Help "

@Back M > \iL] @ 0 /) search ; Favorites {{? == ‘:%

Address | @] http:fflocalhost/WebGoat{attack?Screen=538menu=1600 v .Go Links
Logout @

Exploit Hidden Fields

Solution Yideos Restart this Lesson
General

Try to purchase the HDTV for less than the purchase price, if you have not done so already.

Shopping Cart

Shopping Cart Items -- To Buy Price:

Now Quantity: Total

56 inch HDTV (model KTV-551) 2999.99 v‘l ‘ $2999.99

The total charged to your credit

card: $2999.99 [Update Cart] [Purchase

cure Configuration
Insecure Storage

Parameter Tampering
Exploit Hidden Fields
Exploit Unchecked Email

Bypass Client Side JavaScript
Vslidation

ASPECT

nagement Flaws OWASP Foundation | Project WebGoat | Report Bug
er s

Admin Functions

Challenge

&) %J Local intranet

Copyright© 2015 KRvW Associates, LLC

Object reference issues

Map objects in server
code

Many web apps use
presentation layer
security to “hide”
sensitive functions

This approach is doomed

to failure

Copyright© 2015 KRvW Associates, LLC

Strive for a positive
input validation
whenever possible

Map exposed names to
system objects on the
server

Discard all others

OS-layer data access
control and
compartmentalization
also highly useful

47

#5 Security misconfiguration (was
6)

Weakness in Can be easier for an
underlying components attacker to find
Server, OS, framework, General, not specific to
etc. your app
Can be just as Many are published
damaging as a direct Can be easier to defend
application weakness against also
Attackers don’t care IDS signatures, firewall
where a weakness 1s rules

Copyright© 2015 KRvW Associates, LLC 48

Defenses

Rigorous infrastructure
testing

Penetration testing works
well for this
Keep up with
published reports

I'T Security should be
watching for these

Copyright© 2015 KRvW Associates, LLC

Find the holes before
the attacker does

Testbeds as well as
production

Many products
available to assist here

49

#6 Sensitive data exposure

Business software Potential exposures
routinely processes abound
sensitive data Failure to encrypt in
Payment information transit
Customer information Failure to encrypt stored
Proprietary data data
Application management Poor crypto choices
data

Copyright© 2015 KRvW Associates, LLC 50

Safe crypto usage

Crypto 1s a powerful tool for protecting data, but 1t
1s commonly misused 1n unsafe ways

Problems abound
Key management
Poorly chosen keys
Inadequate algorithms

Remember “encoding” 1s not the same as
“encrypting”

Copyright© 2015 KRvW Associates, LLC

51

Encoding exercise

<) Encoding Basics - Microsoft Internet Explorer, Q@@
n
"

File Edit View Favorites Tools Help

eBack - & ‘ﬂ @ D |)) Search \;’ Favorites %) == ‘:‘
Address | &] http:{flocalhost/WebGoat/attack?Screen=2288menu=1500 v Go Links >

Logout Q -

Encoding Basics

Solution Yideos Restart this Lesson

This lesson will familiarize the user with different encoding schemes.

Enter a string:

Enter a password {optional):
rnunication

nfiguration Description Encoded Decoded

orage
N Basetd
Encoding Basics encoding is a

Parameter Tampering ?Ien\;'g'l: able

%e_ 5|Eun .h'1eirj.a_qern1ent Flaws encoding used

Web Services

el ; to encode

Admin Functions bytes into

Challenge ASCII
characters.
Useful for
making bytes
into a printable
string, but
provides no
security.,

Entity

encoding uses

special

sequences like

& for

special ™

Insecure S

e_‘] javascript:; "3 Local intranet

Copyright© 2015 KRvW Associates, LLC

Crypto issues

Sensitive data must be
protected 1n transit and

at rest

Protection should be
proportional to the
value of the data

Some tips
Store keys 1n safe place

Use strong keys that are
not easily guessed

Copyright© 2015 KRvW Associates, LLC

Use strong algorithms
Avoid re-using keys

Pretty basic, so why
are so many mistakes
made”?

53

Insecure transport layer

This 1s the “in transit”
portion of insecure

crypto
Key management 1s
biggest problem

Copyright© 2015 KRvW Associates, LLC

Exchanging keys
securely 1s where many
mistakes made

Information in URL
field 1s subject to
disclosure

54

Insecure comms Issues

Issues are similar to
other crypto 1ssues

Key management 1s the
big 1ssue 1n crypto

Copyright© 2015 KRvW Associates, LLC

Mutual authentication
1s highly advisable

SSL certificates on both
sides

Not always feasible
Consider Wi-F1 model

55

#7 Missing function level access
control

Many web apps lack Potential exposures abound
even the most Non-privileged user
rudimentary access accesses privileged
control functions or data
if authenticated then...1s Data leakage across
NOT access control administrative
Attackers are often times boundaries

able to navigate to
sensitive data/functions

Copyright© 2015 KRvW Associates, LLC 56

Access to URLs via “forced
browsing”

Access to URLSs 1s most basic presentation layer
control

Attackers only need a browser to guess URLSs
Admin functions commonly “hidden” this way

“Forced browsing” attacks are pervasive and easy
to automate

Copyright© 2015 KRvW Associates, LLC

57

URL access exercise

File Edit View Favorites Tools Help

eBack - ‘ﬂ @ 4) search \J? Favorites %) - & = 3

Addre: ‘E_X] http:fflocalhost/WebGoat/attack?Screen=263&menu=1400

v Go

Links

>»

Logout Q

Forced Browsing

OWASP WebGoat V5.2 I « > | Solution |

Introduction

General

Solution Yideos Restart this Lesson

ntrol Flaws * Your goal should be to try to guess the URL for the "config" interface.
* The "config" URL is only available to the maintenance personnel.
* The application doesn't check for horizontal privileges.

Can you try to force browse to the config page which should only be accessed by
maintenance personnel.

Denial of

Improper Error Handling Created by Sherif Koussa "Lm
In n Flaws
Ins Communication

Insecure Configuration

Forced Browsing

SP Foundation | Project WebGoat | Report Bug

torage
Tampering
gement Flaws
Wweb
Admin Fun
Challenge

tions

€l

&J Local intranet

Copyright© 2015 KRvW Associates, LLC

58

URL access issues

Expect attackers to
“spider” through your
application’s folder/
function tree

Expect attackers to
experiment with

HTML parameters via
GET and POST

Presentation layer
security 1S not
sufficient

Copyright© 2015 KRvW Associates, LLC

J2EE and NET are a
big help here

59

Access control fundamentals

Question every action By role or by user
Is the user allowed to Complexity 1ssues
access this Maintainability issues
File . Creeping exceptions
Function
Data
Etc.

Copyright© 2015 KRvW Associates, LLC 60

Role-based access control

Must be planned Plan for growth

carefully Even when done well,
Clear definitions of exceptions will happen

Users
Objects
Functions
Roles

Privileges

Copyright© 2015 KRvW Associates, LLC

61

Access control matrix

e Admin | Tax& Bill Public Account
Roles | ages Plan Pay Admin
Administrators X
Owners X X
Guests X
Store
information
with ROLES Users

and you've

got a
capabilities or
permissions
model

Copyright© 2015 KRvW Associates, LLC

OWASP's ESAPI

OWASP Top Ten Coverage

A .Cross Site Scripting (XSS)
"

A2.Injection Flaws

A3.Malicious File Exec::tion

Ad4.Insecure Direct Ob;ect Reference

A5.Cross Site RequestrForgery (CSRF)
i

Aéb.Leakage and Improper Error Handling
*

A7.BrokenAuthentication and Sessions
W

AB8.Insecure Cryptographic Storage
r

A9.Insecure Communications
U
A 0. Failure to Restrict URL Access

Validator,Encoder

Encoder ,

HTTPUtilities (upload;
AccessReferenceMap '

User (csrftoken) '
EnterpriseSecurityExc:eption, HTTPUtils

Authenticator,User, HT TP Utils
Encryptor '

HT TPUtilities (secure ::ookie,channel)
AccessController '

.|
Copyright© 2015 KRvW Associates, LLC

63

ESAPI| access control

Enforcing Access Control

isAuthorizedForFunctio “ | 2
‘ n0 ,1; ?__1“ isAuthorizedForData() ‘
| .
 isAuthorizedForURL() |’“\'~., \ | ,
\ \ / ~ isAuthorizedForService()
\ | | |
| Controller Business
* — Functions
*Presentatlon[\
Layer
.-;‘/

] isAuthorizedForFunction() ﬂl

Copyright© 2015 KRvW Associates, LLC

64

ESAPI| access control

In the presentation layer:

<% if (ESAPI.accessController().isAuthorizedForFunction(ADMIN FUNCTION))
{ %>

ADMIN
<% } else { %>

NORMAL

In the business logic layer:

try {

ESAPI.accessController().assertAuthorizedForFunction(BUSINESS FUNCTION);
// execute BUSINESS FUNCTION

} catch (AccessControlException ace) {

... attack in progress

Copyright© 2015 KRvW Associates, LLC

65

#8 Cross site request forgery
(CSRF)

Relatively new, but Consider if the 1mage

potentially disastrous request arrived via

Attacker sends an spam email

image request to victim Emailer renders the
HTML and retrieves all

During an active session “. .
on vulnerable app 1Mages

Occurs while web
browser 1s open and
logged 1nto popular

banking site

Request may include
malicious parameters

Response may include
session cookie

Copyright© 2015 KRvW Associates, LLC

66

CSRF exercise

File Edit

e Back ~

Addre

View Favorites Tools

‘ﬂ @ ;\J /-) Search

[g,‘] http:fflocalhostjWwebGoat/attack?Screen=9&menu=900&Restart=9

Help

’(Favorites %) - &z = ‘3

v“Go

Links

>»

OWASP WebGoat V5.2

Logout 0

Cross Site Request Forgery (CSRF)

Introduction
General

ntrol Flaws
curity

Authen
Buffer rflows
Code Quality

Concur|

Cross-Site Scripting (XSS

Phishing writh X55

LAB: Cross Site Scripting
Stage 1: Stored X535

Stage 2: Block Stored x55
using Input Yalidation

Stage 3: Stored X535
Revisited

Stage 4: Block Stored X55
using Output Encoding

Stage 5: Reflected X535
Stage 6: Block Reflected X535
Stored XS5 Attacks

Cross Site Request Forgery
(CSRF)

Reflected X55 Attacks
HTTPOnly Test

Cross Site Tracing (5T
Attacks

Denial of Service
Improper Error Handling
Injection Flaws

Restart this Lesson

Solution Yideos

Your goal is to send an email to a newsgroup that contains an image whose URL is pointing to
a malicious request. Try to include a 1x1 pixel image that includes a URL. The URL should
point to the CSRF lesson with an extra parameter "transferFunds=4000". You can copy the
shortcut from the left hand menu by right clicking on the left hand menu and choosing copy
shortcut, Whoever receives this email and happens to be authenticated at that time will have
his funds transferred. When you think the attack is successful, refresh the page and you will
find the green check on the left hand side menu.

Title:
Message:

Message List
test

Created by Sherif Koussa m_m

~

&l

&) Local intranet

Copyright© 2015 KRvW Associates, LLC

67

CSRF issues

What’s the big deal?

 can be
used to hide commands
other than 1images

Session cookies often
have long timeout periods

Can redirect commands
elsewhere on local
network

Copyright© 2015 KRvW Associates, LLC

Consider

http://
www.example.com/
admin/doSomething.ctl?
username=admin&pass
wd=admin

Email delivery
mechanism common

Further reading

WWW.OWasp.org

68

CSRF remediation

OWASP says, “Applications must ensure that they
are not relying on credentials or tokens that are
automatically submitted by browsers. The only
solution 1s to use a custom token that the browser
will not ‘remember’ and then automatically include
with a CSRF attack.”

This requires a lot of new coding
Very few existing web apps are protected
Phishers beginning to actively use this technique

Copyright© 2015 KRvW Associates, LLC

69

CSRF Guard (from OWASP)

One solution set 1s freely available
Take a look at CSRF Guard

http://www.owasp.org/index.php/

Category:OWASP CSRFGuard Project

Uses a randomized token sent in a hidden HTML
parameter — NOT auto by browser

Al
http://www.owasp.org/index.php/

so look at CSRF Tester

Category:OWASP CSRFTester Project

Copyright© 2015 KRvW Associates, LLC

70

#9 Using components with known
vulnerabilities

Application ingredient Applications often
lists often include weak “advertise” their

components weaknesses
Older versions with Server headers
published vulns Stack traces when
Fundamentally weak exceptions not handled
components correctly

Copyright© 2015 KRvW Associates, LLC

71

Developers using weak code

According to OWASP, See OWASP Top-10
the following two 2013 list for details
components were

downloaded 22 million
times 1n 2011

Apache CXF
Authentication Bypass

Spring Remote Code
Execution

Copyright© 2015 KRvW Associates, LLC

72

Remediations

The most important
factor 1s vigilance
Keep up to date with

component weaknesses
and patches

Inventory of deployed
components and versions

Include all dependencies

Establish and enforce
policies

Copyright© 2015 KRvW Associates, LLC

Can’t avoid vulnerable
component

Remove the weak
functions
Remember to update when
using new version
Wrappers to disable
unused or weak
functions

73

#10 Unvalidated Redirects and

Forwards

Pages that take users to
other URLSs can be
duped

Users think site 1s
trustworthy

Comes from your
domain

foo.com/redir.php?
url=www.evil.com

Copyright© 2015 KRvW Associates, LLC

Unchecked, can be
used to send users to
malicious sites

Malware launchpads
Target-rich
environment for
phishers

74

Am | vulnerable?

Review code for
redirects or forwards
If target URL 1s a

parameter, ensure
positive validation

Spider through site and
look for redirect
responses

Response code 300-307
(esp 302)

Copyright© 2015 KRvW Associates, LLC

Fuzz test redirectors 1f
code 1sn’t available

75

Better still

Avoid using redirects and forwards entirely
If you must, don’t rely on user parameters

If parameters are essential, don’t rely on what the
user inputs

Positive input validation

ESAPI has a method for checking
sendRedirect()

Copyright© 2015 KRvW Associates, LLC

76

OWASP 10 lessons

Key principles
Positive validation
Access control through entire app architecture
Session management
Protecting sensitive data at rest and 1n transit
Mutual authentication
Error handling
Logging
Defensive programming

Copyright© 2015 KRvW Associates, LLC

77

Part Il - Fix ‘em!

Copyright© 2015 KRvW Associates, LLC

78

WebGoat Dev Labs

Copyright© 2015 KRvW Associates, LLC

79

Lab agenda

We’ll do three hands-on labs

XSS remediation
SQL injection prevention
Role-based access control

Copyright© 2015 KRvW Associates, LLC

80

Some background

Let’s explore the WebGoat architecture a bit first
All source code is 1 our Eclipse project

We’ll edit source in Eclipse and use command line to re-build

mvn clean tomcat:run-war

Instructor and student versions

Suggest refraining from looking at instructor code until after each
lab

Copyright© 2015 KRvW Associates, LLC

81

WebGoat architecture overview

All labs use a custom Action Handler that 1s
invoked from the main WebGoat servlet,
HammerHead.java

The handler will execute their business logic, load
the data into the WebSession object, and then turn
control over to the view component (JSP)

The WebGoat presentation only allows for a lesson
to write into the Lesson Content portion of each

page

Copyright© 2015 KRvW Associates, LLC

82

WebGoat architecture

Browser

Copyright© 2015 KRvW Associates, LLC

Controller
HammerHead
Serviet

Y

View
main.jsp

|

Model
ActionHandlers
&
WebSession

‘_@

83

WebGoat page layout

Main Header

Lesson Header

Navigation
Bar

Lesson Content

Copyright© 2015 KRvW Associates, LLC

Code layout

Each lab’s action handlers are in a folder with same
name

RoleBasedAccessControl lab 1s 1n

org.owasp.webgoat.lessons.RoleBasedAccessControl

Various java classes for each lab function

Copyright© 2015 KRvW Associates, LLC

85

JSP layout

All the JSPs are in
WebContent/Lessons/

Hint: only one lab requires modifying any JSPs

Copyright© 2015 KRvW Associates, LLC

86

Backups are provided

Each lab class has a BACKUP class
Contains original source for the class
Useftul 1f things go badly wrong...

Copyright© 2015 KRvW Associates, LLC

87

Let's take a look in Eclipse

Copyright© 2015 KRvW Associates, LLC

88

Access control policy

* Overall Policy

Assels ; : : : Create /
oles Search List Staf View Profile Edit Profile Delete Profile

Employee X X (Self Only) X (Portions)

Manager X X

X (Others
Only)

Admin X X X

HR X X

« Data Access Policy
- Employees can see their data
- Employees can edit portions of their data
- Managers can see their data and their employees’ data
- HR can see and edit all employees. HR cannot edit their data

Copyright© 2015 KRvW Associates, LLC

Database schema

+ Employee
usernd INT NOT NULL PRIMARY KEY
first_name VARCHAR(20)
last name VARCHAR(20)
ssn VARCHAR(12)
password VARCHAR(10)
title VARCHAR(20)
phone VARCHAR(13)
address1 VARCHAR(80)

* Roles
~ userid INT NOT NULL
— role VARCHAR(10) NOT NULL
—~ PRIMARY KEY (userid, role)

* Ownership
— employer id INT NOT NULL
- employee id INT NOT NULL
- PRIMARY KEY (employee _id, employer_id)

Copyright© 2015 KRvW Associates, LLC

address2 VARCHAR(80)
manager INT

start_date CHAR(8)

salary INT

ccn VARCHAR(30)

cen_limit INT

discipiined_date CHAR(8)
discipiined_notes VARCHAR(60

sonal descnplion
ARCHAR(60)

Org chart for Goat Hills Financial

Copyright© 2015 KRvW Associates, LLC

91

Lab 1: Cross-Site Scripting

77 Favorites

el localhost

w @

(& LaB: Cross Site Scripting

v €| FreeHotmal £ v

“| g v Page~ Safety v Tools v

B

»

OWASP WebGoat V5.2

Introduction

General

Access Control Flaws
AJAX Security
Authentication Flaws
Buffer Overflows

Code Quality
Concurrency

Cross-Site Scripting (XSS)

Phishing with XSS

Stage 5: Reflected XSS
Stage &: Block Reflected XS5

Stored XSS Attacks

Cross Site Reguest Forgery
(CSRF)

Reflected XSS Attacks
HTTPOnly Test

Cross Site Tracing (XST)
Attacks

Denial of Service
Improper Error Handling
Injection Flaws

Insecure Communication
Tnsecure Confinuration

Solution VideosStage 1: Execute a Stored Cross Site Scripting (XSS) Restart this Lesson
attack.

As 'Tom', execute a Stored XSS attack against the Street field on the Edit Profile page. Verify

that Jerry' is affected by the attack.

The passwords for the accounts are the prenames.

&“ Goat Hills Financial

1 Human Resources

[ol
Please Login
Larry Stooge (employee) v ‘
Password

‘dLocaI intranet fa v ®100% ~

Copyright© 2015 KRvW Associates, LLC

92

L.ab overview

S1x stages
Stored XSS attack

Positive mput validation using regex
Stored XSS attack redux

Output encoding

Reflected XSS attack

Positive input validation using regex

Copyright© 2015 KRvW Associates, LLC

93

Stage 1

Login as “Tom”

Plant and execute a stored XSS attack on the Street
field of the Edit Profile page

Verity “Jerry” 1s affected

Hint: All passwords are the users’ first names 1n
lowercase

Note to self: don’t use first name as password

Copyright© 2015 KRvW Associates, LLC

94

Stage 2

Block the XSS 1nput using positive input validation

Hints
Start by looking 1n UpdateProfile action handler

See request.getParameter calls in parseEmployeeProfile

Java.util.regex 1s your friend

Try 1t, then we’ll step through the solution

Copyright© 2015 KRvW Associates, LLC 95

Stage 3

Login as “David” and view “Bruce’s” profile
There’s an XSS attack already in Bruce’s data

Think that’ll get caught by the input validator?

Copyright© 2015 KRvW Associates, LLC

96

Stage 4

Since it’s too late for input validation, fix this one
using output encoding

Hints
Look at output in JSP

htmlEncoder class 1n org.owasp.webgoat.util

Copyright© 2015 KRvW Associates, LLC

97

Stage 5

Login as “Larry”

Use the Search Staff page to construct a reflected
XSS attack

How could Larry attack another employee?

Copyright© 2015 KRvW Associates, LLC

98

Stage 6

Use positive input validation to block this reflected
XSS vulnerability

Hints
Same 1ssues exist here re parsers and regex

Look through FindProfile to find where the name
parameter 1S being input

Copyright© 2015 KRvW Associates, LLC

99

Review checklist

Things to consider when reviewing software

Input validation on everything
Centralized
Easily maintained
Regex-based

Consistently applied

Copyright© 2015 KRvW Associates, LLC 100

Lab 2: SQL Injection

AB: SOL In Windows Internet Explorer B E m
— = ~ <
&) \g localhost v B | $2|[X lb ‘ £

7 Favorites | 55 @& v £ FreeHotmal £ | v

€ LaB: SQL Injection

»

G- B | g= v Page~ Safety v Tools ~

OWASP WebGoat V5.2

Introduction

General

Access Control Flaws
AJAX Security
Authentication Flaws
Buffer Overflows

Code Quality
Concurrency

Cross-Site Scripting (XSS)
Denial of Service
Improper Error Handling
Injection Flaws

Blind SQOL Injection

Numeric SQL Injection

Loe Spoofing
XPATH Injection
LAB: SQL Injection

Stage 3: Numeric SQL
Injection
Stage 4: Parameterized

pery =2

String SOL Injection
Database Backdoors

Insecure Communication
Insecure Configuration
Insecure Storage
Parameter Tampering
Session Management Flaws

A
Solution VideosStage 1: Use String SQL Injection to bypass Restart this Lesson
authentication. Use SQL injection to log in as the boss
('Neville') without using the correct password. Verify that Neville's profile can be viewed and
that all functions are available (including Search, Create, and Delete).
"
w
' Goat Hills Financial
s Human Resources
L o
Please Login
Larry Stooge (employee) v]
Password
v

lDone

% Local intranet f3 v ®100% ~

Copyright© 2015 KRvW Associates, LLC

101

L.ab overview

Four stages

Use SQL injection to login as “Neville” without a correct
password

Block SQL injection using a parameterized query
As “Larry,” use SQL 1njection to view “Neville’s” profile
Block SQL 1njection

Copyright© 2015 KRvW Associates, LLC 102

Stage 1

Use a SQL string injection attack to login as the
boss, “Neville”

WebScarab might be handy

Validate that all functions available to Neville are
accessible

Copyright© 2015 KRvW Associates, LLC 103

Stage 2

Look 1in Login handler
Alter the back-end SQL call

Change from concatenated string to parameterized query

PreparedStatement 1s your friend

Copyright© 2015 KRvW Associates, LLC 104

Stage 3

Login as “Larry”

Execute a numeric SQL 1njection in the View
function

Copyright© 2015 KRvW Associates, LLC 105

Stage 4

This time 1t’s 1n the ViewProfile action handler

Again, use a parameterized query to prevent the
SQL 1njection from working

Copyright© 2015 KRvW Associates, LLC 106

Review checklist

Look through all SQL connections

Must not ever be mutable
No user-supplied data can affect the intent

Static strings are OK

Copyright© 2015 KRvW Associates, LLC 107

Lab 3: Access control

: XROIE BEB

&) \E localhost 3 i v B | $2|[X lb ‘P -

7 Favorites | 55 @& v £ FreeHotmal £ | v

- »
(€ L4B: Role Based Access Control @ - B | @ v Page~ Safety v Tools ~

OWASP WebGoat V5.2

én;;idr;lctlcn Solution VideosStage 1: Bypass Presentational Layer Access Control. Restart this Lesson

. As regular employee 'Tom', exploit weak access
Access Control Flaws . control to use the Delete function from the Staff List page. Verify that Tom's profile can be
Using an Access Control Matrix deleted.The password for a user is always his prename.

Bypass a Path Based Access
Control Scheme

LAB: Role Based

“ Goat Hills Financial

s Human Resources

Remote Admin Access Please Login

AJAX Security Larry Stooge (employee) v]
Authentication Flaws

Buffer Overflows Password

Code Quality

Concurrency

Cross-Site Scripting (XSS)
Denial of Service
Improper Error Handling L3
Injection Flaws

Insecure Communication
Insecure Configuration
Insecure Storage
Parameter Tampering
Session Management Flaws
Web Services

Admin Functions

Challenge

| Done % Local intranet f3 v ®100% ~

Copyright© 2015 KRvW Associates, LLC 108

L.ab overview

Four stages
Bypass business layer access control

Add access control using RBAC
Bypass data layer access control
Add access control using RBAC

Copyright© 2015 KRvW Associates, LLC 109

Stage 1

Login as “Tom”

Bypass access control 1n the Delete function 1n the
Staff List page

Delete Tom’s profile

Copyright© 2015 KRvW Associates, LLC 110

Stage 2

Look 1n the handleRequest method of the
RoleBasedAccessControl handler

How 1s the action protecting for authorized access?

Look at 1sAuthorized method (using Eclipse)
Failures should throw UnauthorizedException()

Copyright© 2015 KRvW Associates, LLC 111

Stage 3

Login as “Tom”

Exploit weak access control to View another
employee’s profile

Copyright© 2015 KRvW Associates, LLC 112

Stage 4

Implement data layer access control to block access

to other users’ profiles

Can build control programmatically or via better

SQL
You can use the following method
isAuthorizedForEmployee(s, userld, subjectUser

)

Be sure to throw UnauthorizedException on failure

Copyright© 2015 KRvW Associates, LLC

113

Review checklist

Look for RBAC structure (or other AC)
Look for consistent application of AC architecture

Focus review around most sensitive functions and
data

Copyright© 2015 KRvW Associates, LLC 114

Copyright© 2018 KRvW Associates, LLC

Kenneth R. van Wyk
KRvW Associates, LLC

Ken@KRvW.com
http:// www.KRvW.com
@KRvW

A

I{en'ﬁefh.ﬁl‘u‘e‘m Wyk = Mark G. Graff
Dan S. Peters = Diana L. Burley, Ph.[].. :

115

