Dr George Danezis
University College London, UK

Selective Disclosure
for Identity Management

A critique of identity

ldentity as a proxy to check credentials
Username decides access in Access Control Matrix

Sometimes this leaks too much information

Real world examples
Tickets allow you to use cinema [/ train
Bars require customers to be older than 18

But do you want the barman to know your address?

The privacy-invasive way

Usual way:
Identity provider certifies attributes of a subject.
Relying Party checks those attributes
Match credential with live person (biometric)

Examples:

E-passport: signed attributes, with lightweight access
control.
Attributes: nationality, names, number, pictures, ...

Identity Cards: signatures over attributes
Attributes: names, date of birth, picture, address, ...

Selective Disclosure Credentials

The players:
Issuer (l) = Identity provider
Prover (P) = Subject
Verifier (V) = Relying party

Properties:

The prover convinces the verifier that he holds a credential
with attributes that satisfy some boolean formula:

Simple example "age=18 AND city=Cambridge”
Prover cannot lie
Verifier cannot infer anything else aside the formula

Anonymity maintained despite collusion of V & |

The big picture

Name=Peqggy,
1. Issuing protocol: age=25,
Prover address=Cambridge,
gets a certified Status=single
credential. Issuer Canno’;!earn
anything
Passport beyond age
Issuing
Authority
» A
Prover 2. Showing Protocol: Verifier
Prover makes assertions Victor
Peggy :
about some attributes (Bar staff

Checking age)
age=25

Two flavours of credentials

Single-show credential (Brands & Chaum)
Blind the issuing protocol
Show the credential in clear
Multiple shows are linkable — BAD

Multi-show (Camenisch & Lysyanskaya)
Random oracle free signatures for issuing (CL)
Blinded showing

Prover shows that they know a signature over a particular
ciphertext.

Cannot link multiple shows of the credential
More complex—BAD

Technical Outline

Cryptographic preliminaries

The discrete logarithm problem What s a
, : : Zero-Knowledge
Schnorr’s Identification protocol Proof?

Unforgeability, simulator, Fiat-Shamir Heuristic
Generalization to representation

Showing protocol
Linear relations of attributes
AND-connective

Issuing protocol
Unlikable issuing
Efficient proof of a signature.

Discrete logarithms (l) - revision

Assume p a large prime
(>1024 bits—2048 bits)
Detail: p = gr+1 where g also large prime
Denote the field of integers modulo p as Z,

Example with p=5
Addition works fine: 1+2 =3, 3+3 =1, ...
Multiplication too: 2%*2 =4, 2*%3 =1, ...
Exponentiation is as expected: 22 = 4

Choose g in the multiplicative group of Z,
Such that g is a generator
Example: g=2

Discrete logarithms (ll) -revision

Exponentiation is computationally easy:
Given g and x, easy to compute g*

But logarithm is computationally hard:
Given g and g¥ difficult to find x = log, g*
If pis large it is practically impossible

Related DH problem
Given (g, g%, g¥) difficult to find g
Stronger assumption than DL problem

More on Zp

Efficient to find inverses

Given c easy to calculate g¢mod p
(p-1)—c mod p-1

Efficient to find roots

Given c easy to find g¥* mod p
C (2/c) =1mod (p-1)

Note the case N=pq (RSA security)

No need to be scared of this field.

Schnorr’s Identification protocol

Exemplary of the zero-knowledge protocols credentials
are based on.

Players
Public— g a generator of Z,
Prover — knows x (secret key)
Verifier — knows y = g* (public key)

Aim: the prover convinces the verifier that she knows an x
suchthatgX=y
Zero-knowledge — verifier does not learn x!

Why identification?
Given a certificate containing y

Schnorr’s protocol

Public: g, p
Knows: x Knows: y=g*
s AY oD@
P->V: gW =d (witness) ‘%’
Peggy V->P: ¢ (challenge) Victor
(Prover) (Verifier)
P->V: CX+W =71 (response)
Random: w
Check:
gr=yca

g CX+W — (gx)cgw

No Schnorr Forgery (intuition)

Assume that Peggy (Prover) does not know x?

If, for the same witness, Peggy forges two valid
responses to two of Victor’s challenges

r,=C, X+W

r,=C,X+W

Then Peggy must know x
2 equations, 2 unknowns (x,w) — can find x

Zero-knowledge (intuition)

The verifier learns nothing new about x.
How do we go about proving this?
Verifier can simulate protocol executions

On his own!
Without any help from Peggy (Prover)

This means that the transcript gives no
information about x

How does Victor simulate a transcript?
(Witness, challenge, response)

Simulator

Need to fake a transcript (g, c’, r')
Simulator:
Trick: do not follow the protocol order!
First pick the challenge ¢’

Then pick a random response r’
Then note that the response must satisfy:
gr’ — (gx)c’ gw' -> gw’ — gr’ / (gx)c'
Solve for gV
Proof technique for ZK

but also important in constructions (OR)

Non-interactive proof?

Schnorr’s protocol
Requires interaction between Peggy and Victor

Victor cannot transfer proof to convince Charlie
(In fact we saw he can completely fake a transcript)

Fiat-Shamir Heuristic
H[-1is a cryptographic hash function
Peggy sets c = H[g"]

Note that the simulator cannot work any more
g" has to be set first to derive c

Signature scheme
Peggy sets c = H[g¥, M]

Generalise to DL represenations

Traditional Schnorr
For fixed g, p and public key h = g*
Peggy proves she knows x such that h = g*

General problem

FIX prime p, generatorsg,, ..., g,

Public key h'=g_*%g, % ... g/

Peggy proves she knows x, ..., x;such that
1'=0,°0,% .. 9"

DL represenation — protocol

Public: g, p
Knows: x,, ..., X
&
% | random: w;
P->V: Ho<i<| gW‘ = d (witness)
Peggy

(Prover) V->P: c (challenge)

I =X+ W, P->V: Fyy - N (response)

Check:
(Ho<i<l giri) = h

Let’s convince ourselves: ([T, 9" = (TTocic) 970 (TTocic; 97 = hea

Knows:

h=g,g,% ...

SO
)

Victor
(Verifier)

g|X|

DL represenation vs. Schnorr

Public: g, p
Knows: x,
&
¥ | random: w,
P->V: gW‘ = d (witness)
Peggy
(Prover) V->P: c (challenge)
[= CX+W, P->V:r (response)
Check
g_ri — hCa
I

Lets convince ourselves: (g;") = (g« g¥) =hca

Knows:
h — g X1

1

SO
)

Victor
(Verifier)

Credentials — showing

Relation to DL representation

Credential representation:
Attributes x.
Credential h =g,*g.,* ... g/, Sig,. e (h)

Credential showing protocol
Peggy gives the credential to Victor (h, Sig,...,(h))
Discloses only some attributes
Peggy proves a statement on values x
Xage = 28 AND X, = H[Cambridge]

city

How?

It always reduces to proving knowledge of a DL
representation.

But which one?

To simply disclose attributes

Cancel them out of the credential
For X,4e = 28 AND X, = H[Cambridge]

city

Proves she know the DL representation of

h/(gage) Xage(gcity) ><City = h’: ﬂ3<i<| gXi

(Also do not forget to check the signature!)

Linear relations of attributes (1)

Remember:
Attributes x., i =1,...,4
Credential h =g,g,* g% g, Sigjsse(N)

Example relation of attributes:
(X, + 2X, — 10X, = 13) AND (x, — 4Xy = ;)
Implies: (x, = 2%,+3) AND (X, = 4X,+5)
Substitute into h

h =g, g,%*5 g, g,%= (9,39,°)(9,%9,9,)* 9, %
Implies: h /(g,3g,5) = (929,49, g,

Linear relations of attributes (2)

Example (continued)
(X, +2X, — 10X, =13) AND (X, — 4X, = 5)
Implies: h /(9,%9,°) = (9,°9,%9,/> 9,
How do we prove that in ZK?
DL representation proof!
h"=h/(g9,29,%
9, =9,°9,"0; 9,'=9,
Prove that you know x, and x,
such thath’ =(g,")s (g,")%

DL rep. — credential show example

Public: g, p Knows:
Knows: X,, X, X, X, h=gXg X 93X394X4
& o
¥ random: w_, w, ¢%6?.
I I I 'v‘
P->V: 91 Wa 92 W2=3 (witness)
Peggy Victor
(Prover) V->P: c (challenge) (Verifier)
r, = CX3+W1 P->V-: r,r, (response)
r, = CX4+W2
Check:

(9,)=(g,)> = (h")a

Check (g.") (g,")» = (h")‘a

Reminder
h=g,9,"g,"3g,™
h'=h / (913925) 91’ = 91292493 g2’ = 94
a=g,"g," r=cx+w, r,=CX,+W,
Check:

(9,)(g,)==(h")a =>
(9,)59) (g, Yo = (h [(9,39,5))F g™ g5™- =>
(912X3+3924X3+5 g3x3g4x4) = h

A few notes

Showing any relation implies knowing all

attributes.

Can make non-interactive (message m)
c=H[h, m, a’]

Other proofs:

(OR) connector (simple concept)
(X...=18 AND x =H[Cambridge])OR(xage=15)

age city

(NOT) connector
Inequality (x,_.> 18)

age

Summary of key concepts (1)

Standard tools
Schnorr — ZK proof of knowledge of discrete log.

DL rep. — ZK proof of knowledge of
representation.

Credential showing
representation + certificate
ZK proof of linear relations on attributes (AND)
More reading: (OR), (NOT), Inequality

Issuing credentials

1. Issuing protocol:
Prover
gets a certified Cannot learn

credential. lssuer anything

Prover Verifier

Credential

h=g,9,%%... g
Sigjssper(h)

Issuing security

Issuing: What do we want?
Peggy authenticates and provides a list of attributes.

Issue checks all and provides a signed credential.
In the form we discussed previously.

Peggy needs to do two things:

Blind the credential.
Multiple times

Prove that she possesses a valid signature on it.
Without revealing the actual signature.

Solution: the CL signature scheme.

CL Signature Scheme

Setup:
Generate and RSA modulus n = pq
(with p=2p’+1, g=2q'+1, p,q,p’,q’ large primes)
Chooseg_,...,g,,b, c
(all of which are quadrat|c residues)

Publickey=(n, g,,...,9,,b, ©);
Private Key =p, q

Signature:
Attributes: x, ..., X,
Pick a random prime e, and random s
v=(c/((g)2...(g)"b*)**modn
Output signature (e, s, v)
Cannot forge because (.)*¢ requires knowledge of p, q

How to verify a CL signature?

Reminder
Public:c, g, b, n
v=(c/((g)2...(g) b%)¥*modn
Signature (e, s, V)

Zero-knowledge DL Rep. Proof:
Getarandomr
Define v/ =v b’
Reveal: v’

DL Rep. proof of:
c=(v)e((g)e...(g) b*e

Does that work?

c=(v)e((g,)...(g)" bser
c=(vb"e((g,)a...(g)Ibsber

c=(v)® ((g)e...(g) b

Remember: v =(c/((g,)2...(g,)" b)Ye
c=((c/((g)e...(g)"b*) ") ((g)=...(g)"b°
c=(c/)

C=C

Unforgeability of signature

Based on Strong RSA assumption:
Impossible to find a Vv’
Without computing (.)¥®
Which is infeasible without p, g
Prover does not know p, g (only n)

Privacy

Unlikability of signature and showing
Signature (e,s,v)
Showing (v') + ZK proof

V and v’ are unlinkable
Proof does not learn s, e

Result:
We can show the credential many times.
Each time is unlikable to the others.
One issue — many (unlinkable) uses.

Full credential protocol

Putting it all together:
CL signature proof is already a DL proof:

c=(V)e((g,)e...(g)" beer

Integrate all previous tricks to reveal or show relations
on attributes.

E.g. show attributes x, and x.:
Reveal x, and x,

Show c/ (gl)xl(gz)Xzz (V’)e ((93)x3 ___(gl)X| bs-er

Key concepts so far (2)

Credential issuing
Authentication & Authoritzation
Signing (using CL)

Showing Credential
Re-randomize and proof possession of signature
Integrate proof over attributes

Further topics
Transferability of credential
Double spending

Key applications

Attribute based access control
Federated identity management

Electronic cash
(double spending)

Privacy friendly e-identity
|d-cards & e-passports

Multi-show credentials!

References

Core:

Claus P. Schnorr. Efficient signature generation by smart
cards. Journal of Cryptology, 4:161—174, 1991.

Stefan Brands. Rethinking public key infrastructures and
digital certificates — building in privacy. MIT Press.

More:

Jan Camenisch and Markus Stadler. Proof systems for general
statements about discrete logarithms. Technical report TR
260, Institute for Theoretical Computer Science, ETH, Zurich,
March 1997.

Jan Camenisch and Anna Lysianskaya. A signature scheme
with efficient proofs. (CL signatures)

