Dr George Danezis University College London, UK

Selective Disclosure for Identity Management

A critique of identity

- Identity as a proxy to check credentials
 - Username decides access in Access Control Matrix
- Sometimes this leaks too much information
- Real world examples
 - Tickets allow you to use cinema / train
 - Bars require customers to be older than 18
 - But do you want the barman to know your address?

The privacy-invasive way

- Usual way:
 - Identity provider certifies attributes of a subject.
 - Relying Party checks those attributes
 - Match credential with live person (biometric)
- Examples:
 - E-passport: signed attributes, with lightweight access control.
 - Attributes: nationality, names, number, pictures, ...
 - Identity Cards: signatures over attributes
 - Attributes: names, date of birth, picture, address, ...

Selective Disclosure Credentials

The players:

- Issuer (I) = Identity provider
- Prover (P) = Subject
- Verifier (V) = Relying party

Properties:

- The prover convinces the verifier that he holds a credential with attributes that satisfy some boolean formula:
 - Simple example "age=18 AND city=Cambridge"
- Prover cannot lie
- Verifier cannot infer anything else aside the formula
- Anonymity maintained despite collusion of V & I

The big picture

Two flavours of credentials

- Single-show credential (Brands & Chaum)
 - Blind the issuing protocol
 - Show the credential in clear
 - Multiple shows are linkable BAD
- Multi-show (Camenisch & Lysyanskaya)
 - Random oracle free signatures for issuing (CL)
 - Blinded showing
 - Prover shows that they know a signature over a particular ciphertext.
 - Cannot link multiple shows of the credential
 - More complex BAD

We will Focus on these

Technical Outline

- Cryptographic preliminaries
 - The discrete logarithm problem
 - Schnorr's Identification protocol
 - Unforgeability, simulator, Fiat-Shamir Heuristic
 - Generalization to representation
- Showing protocol
 - Linear relations of attributes
 - AND-connective
- Issuing protocol
 - Unlikable issuing
 - Efficient proof of a signature.

What is a Zero-Knowledge Proof?

Discrete logarithms (I) - revision

- Assume p a large prime
 - (>1024 bits—2048 bits)
 - Detail: p = qr + 1 where q also large prime
 - Denote the field of integers modulo p as Z_p
- Example with p=5
 - Addition works fine: 1+2 = 3, 3+3 = 1, ...
 - Multiplication too: 2*2 = 4, 2*3 = 1, ...
 - Exponentiation is as expected: 2² = 4
- Choose g in the multiplicative group of Z_p
 - Such that g is a generator
 - Example: g=2

Discrete logarithms (II) -revision

- Exponentiation is computationally easy:
 - Given g and x, easy to compute g^x
- But logarithm is computationally hard:
 - Given g and g^x , difficult to find $x = \log_q g^x$
 - If p is large it is practically impossible
- Related DH problem
 - Given (g, g^x, g^y) difficult to find g^{xy}
 - Stronger assumption than DL problem

More on Z_p

- Efficient to find inverses
 - Given c easy to calculate g^{-c} mod p
 - (p-1) c mod p-1
- Efficient to find roots
 - Given c easy to find g^{1/c} mod p
 - $c(1/c) = 1 \mod (p-1)$
 - Note the case N=pq (RSA security)
- No need to be scared of this field.

Schnorr's Identification protocol

- Exemplary of the zero-knowledge protocols credentials are based on.
- Players
 - Public g a generator of Z_p
 - Prover knows x (secret key)
 - Verifier knows y = g^x (public key)
- Aim: the prover convinces the verifier that she knows an x such that g^x = y
 - Zero-knowledge verifier does not learn x!
- Why identification?
 - Given a certificate containing y

Schnorr's protocol

Knows: x

Peggy (Prover)

Random: w

Public: g, p

P->V:
$$g^{w} = a$$

V->P: c

P->V: cx+w=r

X+W=r (response)

(witness)

(challenge)

Knows: y=g^x

Victor (Verifier)

Check:

$$g^r = y^c a$$

 \downarrow
 $g^{cx+w} = (g^x)^c g^w$

No Schnorr Forgery (intuition)

- Assume that Peggy (Prover) does not know x?
 - If, for the same witness, Peggy forges two valid responses to two of Victor's challenges

$$r_1 = c_1 x + w$$

 $r_2 = c_2 x + w$

- Then Peggy must know x
 - 2 equations, 2 unknowns (x,w) can find x

Zero-knowledge (intuition)

- The verifier learns nothing new about x.
- How do we go about proving this?
 - Verifier can simulate protocol executions
 - On his own!
 - Without any help from Peggy (Prover)
 - This means that the transcript gives no information about x
- How does Victor simulate a transcript?
 - (Witness, challenge, response)

Simulator

- Need to fake a transcript (gw', c', r')
- Simulator:
 - Trick: do not follow the protocol order!
 - First pick the challenge c'
 - Then pick a random response r'
 - Then note that the response must satisfy: $g^{r'} = (g^x)^{c'} g^{w'} -> g^{w'} = g^{r'} / (g^x)^{c'}$
 - Solve for g^{w'}
- Proof technique for ZK
 - but also important in constructions (OR)

Non-interactive proof?

- Schnorr's protocol
 - Requires interaction between Peggy and Victor
 - Victor cannot transfer proof to convince Charlie
 - (In fact we saw he can completely fake a transcript)
- Fiat-Shamir Heuristic
 - H[·] is a cryptographic hash function
 - Peggy sets c = H[g^w]
 - Note that the simulator cannot work any more
 - g^w has to be set first to derive c
- Signature scheme
 - Peggy sets c = H[g^w, M]

Generalise to DL represenations

- Traditional Schnorr
 - For fixed g, p and public key $h = g^x$
 - Peggy proves she knows x such that h = g^x
- General problem
 - Fix prime p, generators g₁, ..., g_l
 - Public key h'= $g_1^{x_1}g_2^{x_2}...g_1^{x_1}$
 - Peggy proves she knows $x_1, ..., x_l$ such that $h'=g_1^{x_1}g_2^{x_2}...g_l^{x_l}$

DL represenation – protocol

Check:

$$(\prod_{0 \le i \le l} g_i^{r_i}) = h^c a$$

Let's convince ourselves: $(\prod_{0 < i < l} g_i^{r_i}) = (\prod_{0 < i < l} g_i^{x_i})^c (\prod_{0 < i < l} g_i^{w_i}) = h^c$ a

DL represenation vs. Schnorr

$$(\prod_{0 \le i \le l} g_i^{r_i}) = h^c a$$

Lets convince ourselves: $(\prod_{0 \le i \le l} g_i^{r_i}) = (\prod_{0 \le i \le l} g_i^{x_i})^c (\prod_{0 \le i \le l} g_i^{w_i}) = h^c$ a

Credentials – showing

- Relation to DL representation
- Credential representation:
 - Attributes x_i
 - Credential $h = g_1^{X_1}g_2^{X_2} \dots g_l^{X_l}$, Sig_{lssuer}(h)
- Credential showing protocol
 - Peggy gives the credential to Victor (h, Sig_{Issuer}(h))
 - Discloses only some attributes
 - Peggy proves a statement on values x_i
 - $X_{age} = 28 \text{ AND } X_{city} = H[Cambridge]$

How?

- It always reduces to proving knowledge of a DL representation.
 - But which one?
- To simply disclose attributes
 - Cancel them out of the credential
 - For $X_{age} = 28 \text{ AND } X_{city} = H[Cambridge]$
- Proves she know the DL representation of

$$h/(g_{age})^{X_{age}}(g_{city})^{X_{city}} = h' = \prod_{3 \le i \le l} g^{x_i}$$

(Also do not forget to check the signature!)

Linear relations of attributes (1)

Remember:

- Attributes x_i , i = 1,...,4
- Credential $h = g_1^{x_1}g_2^{x_2}g_3^{x_3}g_4^{x_4}$, $Sig_{lssuer}(h)$

Example relation of attributes:

- $(x_1 + 2x_2 10x_3 = 13) AND (x_2 4x_3 = 5)$
- Implies: $(x_1 = 2x_3 + 3)$ AND $(x_2 = 4x_3 + 5)$
- Substitute into h
 - $h = g_1^{2X_3+3} g_2^{4X_3+5} g_3^{X_3} g_4^{X_4} = (g_1^3 g_2^5)(g_1^2 g_2^4 g_3^4)^{X_3} g_4^{X_4}$
 - Implies: h / $(g_1^3g_2^5) = (g_1^2g_2^4g_3)^{x_3}g_4^{x_4}$

Linear relations of attributes (2)

- Example (continued)
 - $(x_1 + 2x_2 10x_3 = 13) AND (x_2 4x_3 = 5)$
 - Implies: h / $(g_1^3g_2^5) = (g_1^2g_2^4g_3^2)^{x_3}g_4^{x_4}$
- How do we prove that in ZK?
 - DL representation proof!
 - $h' = h / (g_1^3 g_2^5)$
 - $g_1' = g_1^2 g_2^4 g_3 \qquad g_2' = g_4$
 - Prove that you know x_3 and x_4 such that $h' = (g_1')^{x_3} (g_2')^{x_4}$

DL rep. – credential show example

Check $(g_1')^{r_1} (g_2')^{r_2} = (h')^{c_1}$

Reminder

•
$$h = g_1^{X_1}g_2^{X_2}g_3^{X_3}g_4^{X_4}$$

• $h' = h / (g_1^3g_2^5)$ $g_1' = g_1^2g_2^4g_3$ $g_2' = g_4$
• $a = g_1'^{W_1}g_2'^{W_2}$ $r_1 = cx_3 + w_1$ $r_2 = cx_4 + w_1$

Check:

$$(g_{1}')^{r_{1}} (g_{2}')^{r_{2}} = (h')^{c}a =>$$

$$(g_{1}')^{(x_{3}+w_{1})} (g_{2}')^{(x_{4}+w_{1})} = (h/(g_{1}^{3}g_{2}^{5}))^{(x_{1}}g_{2}'^{w_{1}}g_{2}'^{w_{2}} =>$$

$$(g_{1}^{2x_{3}+3}g_{2}^{4x_{3}+5}g_{3}^{x_{3}}g_{4}^{x_{4}}) = h$$

A few notes

- Showing any relation implies knowing all attributes.
- Can make non-interactive (message m)
 - c = H[h, m, a']
- Other proofs:
 - (OR) connector (simple concept)
 - $(x_{age}=18 \text{ AND } x_{city}=H[Cambridge]) \text{ OR } (x_{age}=15)$
 - (NOT) connector
 - Inequality $(x_{age} > 18)$

Summary of key concepts (1)

- Standard tools
 - Schnorr ZK proof of knowledge of discrete log.
 - DL rep. ZK proof of knowledge of representation.
- Credential showing
 - representation + certificate
 - ZK proof of linear relations on attributes (AND)
 - More reading: (OR), (NOT), Inequality

Issuing credentials

Issuing security

- Issuing: What do we want?
 - Peggy authenticates and provides a list of attributes.
 - Issue checks all and provides a signed credential.
 - In the form we discussed previously.
- Peggy needs to do two things:
 - Blind the credential.
 - Multiple times
 - Prove that she possesses a valid signature on it.
 - Without revealing the actual signature.
- Solution: the CL signature scheme.

CL Signature Scheme

Setup:

- Generate and RSA modulus n = pq (with p=2p'+1, q=2q'+1, p,q,p',q' large primes)
- Choose g₁,...,g₁,b, c
 (all of which are quadratic residues)
- Public key = $(n, g_1, ..., g_l, b, c)$; Private Key = p, q

Signature:

- Attributes: x₁, ..., x₁
- Pick a random prime e, and random s
- $v = (c / ((g_1)^{x_1} ... (g_l)^{x_l} b^s)^{1/e} \mod n$
- Output signature (e, s, v)
 - Cannot forge because (.)^{1/e} requires knowledge of p, q

How to verify a CL signature?

- Reminder
 - Public: c, g_i, b, n
 - $v = (c / ((g_1)^{x_1} ... (g_l)^{x_l} b^s)^{1/e} \mod n$
 - Signature (e, s, v)
- Zero-knowledge DL Rep. Proof:
 - Get a random r
 - Define $v' = v b^r$
 - Reveal: v'
 - DL Rep. proof of: $c = (v')^e ((g_1)^{x_1} ... (g_l)^{x_l} b^{s-er}$

Does that work?

- $c = (v')^e ((g_1)^{x_1} ... (g_l)^{x_l} b^{s-er}$
 - $c = (v b^r)^e ((g_1)^{x_1} ... (g_l)^{x_l} b^s b^{-er}$
 - $c = (v)^e (b^{re}) ((g_1)^{x_1} ... (g_l)^{x_l} b^s b^{-er}$
 - Remember: $v = (c / ((g_1)^{x_1} ... (g_l)^{x_l} b^s)^{1/e}$
 - $c = ((c / ((g_1)^{x_1} ... (g_l)^{x_l} b^s)^{1/e})^e ((g_1)^{x_1} ... (g_l)^{x_l} b^s)^e$
 - $\mathbf{c} = (\mathbf{c} / ((g_1)^{x_1} ... (g_l)^{x_l} b^s) ((g_1)^{x_1} ... (g_l)^{x_l} b^s)$
 - $\mathbf{C} = \mathbf{C}$

Unforgeability of signature

Based on Strong RSA assumption:

- Impossible to find a v'
- Without computing (.)^{1/e}
- Which is infeasible without p, q
- Prover does not know p, q (only n)

Privacy

- Unlikability of signature and showing
 - Signature (e,s,v)
 - Showing (v') + ZK proof
 - V and v' are unlinkable
 - Proof does not learn s, e

Result:

- We can show the credential many times.
- Each time is unlikable to the others.
- One issue many (unlinkable) uses.

Full credential protocol

- Putting it all together:
 - CL signature proof is already a DL proof:

$$c = (v')^e ((g_1)^{x_1} ... (g_l)^{x_l} b^{s-er}$$

- Integrate all previous tricks to reveal or show relations on attributes.
- E.g. show attributes x_1 and x_2 :
 - Reveal x_1 and x_2
 - Show c / $(g_1)^{x_1}(g_2)^{x_2} = (v')^e ((g_3)^{x_3} ... (g_l)^{x_l} b^{s-er}$

Key concepts so far (2)

- Credential issuing
 - Authentication & Authoritzation
 - Signing (using CL)
- Showing Credential
 - Re-randomize and proof possession of signature
 - Integrate proof over attributes
- Further topics
 - Transferability of credential
 - Double spending

Key applications

- Attribute based access control
- Federated identity management
- Electronic cash
 - (double spending)
- Privacy friendly e-identity
 - Id-cards & e-passports
- Multi-show credentials!

References

Core:

- Claus P. Schnorr. Efficient signature generation by smart cards. Journal of Cryptology, 4:161—174, 1991.
- Stefan Brands. Rethinking public key infrastructures and digital certificates – building in privacy. MIT Press.

More:

- Jan Camenisch and Markus Stadler. Proof systems for general statements about discrete logarithms. Technical report TR 260, Institute for Theoretical Computer Science, ETH, Zurich, March 1997.
- Jan Camenisch and Anna Lysianskaya. A signature scheme with efficient proofs. (CL signatures)