
2/04/2015

1

Software protection
Bart De Win & Nessim Kisserli

SecAppDev 2015

PwC

Who are we ?

Bart De Win

•15+ years of Information Security Experience

•Ph.D. in Computer Science - Application Security

•Author of >60 scientific publications

•ISC2 CSSLP certified

•Senior Manager @ PwC Belgium:

•Expertise Center Leader Software Assurance

•(Web) Application tester (pentesting, arch. review,
code review, ...)

•Trainer for several courses related to secure software

•Specialized in Secure Software Development Lifecycle
(SDLC)

• OWASP OpenSAMM co-leader

• Contact me at bart.de.win@be.pwc.com

Nessim Kisserli

•15 years of Information Security Experience

•Msc. in Information Security

• UNIX System Administrator

• Former researcher at KULeuven

•Senior Consultant @ PwC Belgium:

•Application tester (pentesting, code review, ...)

•SDLC

• Contact me at nessim.kisserli@be.pwc.com

February 2015Software Protection

2

2/04/2015

2

PwC

Agenda

1. Setting The Scene

2. Software Protection Controls

3. Discussion

February 2015Software Protection

3

PwC

Setting the scope

Once software is written,
what can the manufacturer do

within the same software
to protect it against abuse ?

February 2015Software Protection

4PwC

2/04/2015

3

PwC

Why do we need protection?

5

February 2015Software Protection

5PwC

The unauthorised copying
or distribution of copyright
protected software

Our software can be
modified to include
malicious code

PwC

Real world examples

February 2015Software Protection

6

Reverse engineering software to steal a
proprietary image compression function.

Modifying mobile banking
apps and redistributing them,
introducing backdoors and
illegally redistributing.

2/04/2015

4

PwC

Runtime

General software model

7

App App

App

App PL

HW PL

App

Verification PL

Static

Dynamic

February 2015Software Protection

PwC

Is it useful ?

• Fundamentally impossible to protect software if you can’t trust the
execution platform (e.g., using a TPM)

• Still, software-only protection does make sense

• If well scoped & targeted

• To reasonably prolongue the time to break the protection

February 2015Software Protection

8

2/04/2015

5

PwC

Threats and controls
A general overview

February 2015Software Protection

9

9

Unauthorised Analysis
• Obfuscation
• Code encryption
• Anti debugging
• Whitebox crypto

Unauthorised Modification
• Code signing
• Remote attestation
• Proof carrying code
• Code guards

Unauthorised Copying
• Watermarking
• Time based crypto
• DRM

Unauthorised Usage
• Logging
• Diversification
• Licensing

PwC

Software Protection Timeline

February 2015Software Protection

10

… Implement Build Distribute Execute Update

Unauthorized
Copy

Unauthorized
Analysis

Licensing
Schemes

Anti-
Debugging

Code
Obfuscation

Code
Signing

Unauthorized
Use

Unauthorized
Tampering

Unauthorized
Tampering

Whitebox
Crypto

Code
Encryption

Remote
Attestation

P
R

O
T

E
C

T
A

T
T

A
C

K

2/04/2015

6

PwC

0-way

Software protection models

February 2015Software Protection

11

Unidirectional

1-way

Bidirectional

2-way

Bidirectional
+ feedback

N-way

Vendor Client

PwC

Agenda

1. Setting The Scene

2. Software Protection Controls

◦ Unauthorized Analysis

◦ Unauthorized Modification

◦ Unauthorized Copy

◦ Unauthorized Use

3. Discussion

February 2015Software Protection

12

2/04/2015

7

PwC

Obfuscation

February 2015Software Protection

13

Network interaction 0-way

SDLC stage Build

Commercial availability Yes

Technology specificity Language-dependent

Technical complexity Low-Medium

Implementation cost Low

What is it?
• Obfuscation is the process of making “source” code difficult for humans

and/or machines to understand
• For scripting languages (In the web context)
• For Bytecode (Java, .Net CLR)
• For Binaries (C, C++, ASM)

How is it applied?
• Modifying the “source” with semantic preserving transformations
• Applied in the last phase of the software build process

PwC

Obfuscation – Techniques

Typical techniques are the following:

• Name obfuscation: At source code level, change class and function
names

• String encryption: encrypt the strings in the .data section

• Control flow obfuscation (control-flow flattening) : Break the
structure of the CFG.

• Code virtualization: Translate the code into virtual opcodes that can
be understood by a secure virtual machine.

February 2015Software Protection

14

2/04/2015

8

PwC

Obfuscation – Control Flow Flattening

February 2015Software Protection

15

PwC

Obfuscation - Products

Many commercial and open-source products available, e.g.:

• ProGuard/DexGuard

• Arxan

• Babel

• Irdeto (Cloakware)

• DashO

• …

Differ in supported techniques languages, and ease of configuration

February 2015Software Protection

17

2/04/2015

9

PwC

Obfuscation - Discussion

• Obfuscation can make it harder to reverse engineer the software and
try to understand what it does (also for reflection), but it does not make
it impossible.

• One important requirement is that the resulting code (after
obfuscation) should still be executable without any reversing
transformations.

• Obfuscation is sometimes used to hide malicious code, thereby also
impact for anti-virus products

• Code obfuscation can be combined with certain licensing schemes.
For example, the product key can be used to derive a secret key used to
de-obfuscate the transformed code

February 2015Software Protection

18

PwC

Code Encryption

February 2015Software Protection

19

Network interaction 0-way

SDLC stage Compilation

Commercial availability Yes+

Technology specificity Independent

Technical complexity Low

Implementation cost Low

What is it?

• It encrypts the binary code, and only decrypts the code when

it is needed.

How is it applied?

• Mostly part of a bigger protection scheme (it comes as a

feature of a software protector)

2/04/2015

10

PwC

Code Encryption - Techniques

• Software packer: Compresses the code and packs it into a binary.
Decompressing and recreating the original file is done at runtime. The
attacker can still obtain a memory dump

• Software cryptor: Performs code mutation, transforming them to
something which can be executed.

February 2015Software Protection

20

PwC

Code Encryption – Overview

February 2015Software Protection

21

Allocation

Decryption

Decompression

Engine loading Integrity check

DRM management

Partial decryption

Relocation, import,
..

Executing code

2/04/2015

11

PwC

Code Encryption – Discussion

• Code encryption works, but it will only slow down a determined
attacker

• The resulting code is dependent on some sort of “loading stub” to
decrypt certain sections of the code.

• Can be more than simply encrypting binary sections, it can also
deter standard attacks like trying to trace system calls, or library calls
or even try to encrypt the process memory

February 2015Software Protection

22

PwC

Anti-debugging

February 2015Software Protection

23

Network interaction 0-way

SDLC stage Distribution

Commercial availability Yes

Technology specificity Independent

Technical complexity Low-Medium

Implementation cost Low

What is it?

• Software-level techniques used to “fool” the algorithms used

by debuggers.

How is it applied?

There are two common ways:

• First, fool linear sweep, and recursive descent disassemblers

• Second, introduce dynamic at run time behaviour.

2/04/2015

12

PwC

Anti-debugging – Example 1

- Example 1: Self debugging

The windows API allows for programmers to connect to the app with a
debugger, an example of such a call is the “DbgUIConnectToDbg”

A initial loader programme can create a new process with the
DEBUG_PROCESS flag in the CreateProcess function.

Because the programme will already be “debugged”, an additional
debugger will not be able to attach to the programme.

February 2015Software Protection

24

PwC

Anti-debugging – Example 2

- Example 2: Thread hiding

The windows anti debugging API allows the programmer to create
certain classes with the NtSetInformationThread field set.

A debugger would not receive any events of a thread with the
HideThreadFromDebugger class called on.

If (hThread == NULL)
status = NtSIT(GetCurrentThread(),

0x11, // HideThreadFromDebugger
0,0);

February 2015Software Protection

25

2/04/2015

13

PwC

Anti-debugging – Discussion

• An arms race between attackers and defenders.

• Self contained “security”, no trusted third party required

• Some software protector solutions provide anti-debugging
techniques that can be applied when building the software. Some
protectors include anti patching heuristics.

• Most common techniques attempt to detect breakpoints on
instructions or memory access, or try to protect against dumping
certain memory regions.

February 2015Software Protection

26

PwC

White-box Cryptography (WBC)

February 2015Software Protection

27

Network interaction 0-way

SDLC stage Implementation

Commercial availability Yes

Technology specificity Independent

Technical complexity Medium-High

Implementation cost Low-Medium

What is it?
• Allows a specific cipher and key combination* to be used for encrypting and

decrypting data, in a hostile environment, open to analysis and tampering by an
attacker without leaking the key.

How is it applied?
• The key, cipher and random data are merged and transformed into a complex

series of lookup tables used in a programme. When executed, it encrypts or
decrypts its input producing the same result as the black-box-equivalent cipher
and key.

2/04/2015

14

PwC

WBC

White-box cryptography is a solution to the white-box (or malicious
host) attack model. Namely:

• Attacker has full access to the software implementation of a
cryptographic algorithm

• Attacker has full control over the execution platform (CPU state,
memory and register details, etc.)

The implementation must be its own protection.

February 2015Software Protection

28

PwC

WBC – Overview

February 2015Software Protection

29

2/04/2015

15

PwC

WBC – How it works

We capture the result of key dependent operations into a lookup table
and store them into the binary.

Next, the lookup data flow is randomized (random –input and output
bijective encoding) – the resulting algorithm appears as the
composition of a series of lookups on random values.

As a final step, some key independent encodings may be used to prevent
code lifting

February 2015Software Protection

30

PwC

WBC – Advantages

WBC does not depend on hardware modules. This means:

• Faster “manufacturing”

• Cheaper “manufacturing” – no need for certified factories

• Lower cost of production

• Better platform compatibility*

Implementations, even with the same key, are naturally diversified
(built-in watermarking).+

By only providing an encryption call, vendors can “convert” a
symmetric cipher into an asymmetric one!

February 2015Software Protection

31

2/04/2015

16

PwC

WBC - Disadvantages

• Size: The size of a white-box implementation is much larger than the
equivalent black box implementation (e.g. 188 times)++

• Speed: White-box implementations are generally slower than black
box techniques (e.g. 55 times slow-down)+

• They are fixed-key solutions: Dynamic key implementations will
probably weaken security.

• All current AES white-box implementations available in academic
literature have been broken.

• Commercial companies don’t publish their implementations..

February 2015Software Protection

32

PwC

WBC – commercial solutions

Used by many companies (mainly DRM):

• Microsoft
• Apple+
• Sony
• NAGRA
• Netflix..

WBC solutions provided by many companies:

• Arxan
• Philips
• whiteCryption (DES, AES, ECC, SHA, 3DES, RSA, ECDSA, DH, etc.)
• Irdeto (Cloakware)
• SafeNet
• Inside Secure (Metaforic) (AES, RSA, ECDSA)

February 2015Software Protection

33

2/04/2015

17

PwC

WBC - commercial solutions

Inside Secure (Metaforic) White-box

• Provide AES, RSA, ECDSA white-box implementations for iOS,
Android BB10, Linux, Windows, OSX.

• Use-case: protect sensitive data / credentials in Enterprise BYOD
solutions by using white-box crypto.

whiteCryption’s Secure Key Box (SKB) provides many whitebox
implementations of ciphers, signature verification, key digest, and key
agreement algorithms.

February 2015Software Protection

34

PwC

WBC – Discussion

February 2015Software Protection

35

Exists for symmetric
(DES, 3DES, AES)
and asymmetric
(RSA, ECC) algorithms,
signatures (ECDSA) and
key exchange protocols (DH, ECDH).

In general, even the best crypto is insufficient in practice:

No attacks have been observed to-date on commercial white-box crypto
implementations. Attackers always choose a weaker vector. White-box
crypto (adherence to Kerckhoff’s principle) is, in a sense, the opposite of
obfuscation (security through obscurity)

2/04/2015

18

PwC

Agenda

1. Setting The Scene

2. Software Protection Controls

◦ Unauthorized Analysis

◦ Unauthorized Modification

◦ Unauthorized Copy

◦ Unauthorized Use

3. Discussion

February 2015Software Protection

36

PwC

Code Signing

February 2015Software Protection

37

Network interaction 0-way

SDLC stage Deployment

Commercial availability Yes

Technology specificity Independent

Technical complexity Low

Implementation cost Low

What is it?
• The process of digitally signing executables to confirm the software author

and guarantee that the code has not been altered, making an assertion
about the binary.

How is it applied
• Software is signed with a private key and distributed with the

corresponding commercial software publishing certificate.
• Certificate requestors must first “prove” their identity.

2/04/2015

19

PwC

Code Signing - Overview

February 2015Software Protection

38

PwC

Code signing on mobile

New execution environments allow for new code signing enforcement

- Android

By default, android requires that all apps are signed before they can be
installed. The platform asserts the code itself + it asserts the
permissions

- iOS

Apple requires that all iOS apps are signed by a certificate issued by
Apple to a trusted developer. After the app verification process by apple,
the app is re-signed before it can run an iOS device

February 2015Software Protection

39

2/04/2015

20

PwC

Code Signing – Discussion

• PKI is a trusted, well proven technology that is used every day to
ensure secure communication, it’s a natural extension to apply this is
on software authentication

• Most of the platforms provide hooks for enforcement, and more of
them will start to demand it

• The host is responsible for ensuring the software package is signed
by a trusted authority

• Both Windows and Mac support signed applications

February 2015Software Protection

40

PwC

Code Guards

February 2015Software Protection

41

Network interaction 0-way

SDLC stage Build

Commercial availability Yes

Technology specificity Independent

Technical complexity Low-Medium

Implementation cost Low-Medium

What is it?
• Small pieces of code which verify the integrity of an application’s

execution, and possibly each other’s. Designed to detect unauthorized
software modification.

• May optionally restore certain corrupted values.

How is it applied?
• During development, critical regions are identified for protection. In

toolchain-assisted solutions, source code hints enable the compiler to
build a protection profile for later instrumentation, generally at link-time.

2/04/2015

21

PwC

Code Guards – Overview

February 2015Software Protection

42

PwC

Code Guards – Practical application

• In full COTS solutions, guards inserted without source code using
binary rewriting.

• As guards can be identified, further techniques are used to maximize
their effectiveness including:

• Embedding large numbers of guards, including redundant ones

• Delaying guard effects from time-of-check

• Using anti-debugger, anti-analysis tricks

• Obfuscation

• Running guards in a separate process (VM/Hypervisor)

February 2015Software Protection

43

2/04/2015

22

PwC

Code Guards - Commercial use

• Arxan first commercialized the concept in 2001, with support for
linux, windows, OS X, Android, IOS, Java and .NET.

• Checksum (code guards)

• Self-repair (repair guards)

• Requires data/code redundancy in the binary.

February 2015Software Protection

44

PwC

Code Guards: Commercial Use 2

• Microsoft integrated code guards into a proof of concept,
comprehensive protection solution (XFI) on windows.

• Applied to legacy code (uses binary rewriting) .

• Protected image rendering programme which detected a malicious
JPEG (malware) and aborted rendering.

• Code guards used to check Control Flow Integrity (CFI) by:

• Checking transfers of control against whitelisted addresses

• Checking integrity of register and stack values (against shadow
copies), etc.

February 2015Software Protection

45

2/04/2015

23

PwC

Code Guards – Discussion

Disadvantages to code guards include:

• Increased software complexity, code size and runtime overhead

• Incompatibility with self-modifying code

• “Brittle” and risk “invalidation” by compiler: Generally inserted via
binary rewriting.

• Developed and extensively studied in academic literature where
numerous schemes exist.

• Generally deployed within commercial products as part of a wider,
multi-layered protection mechanism.

February 2015Software Protection

46

PwC

Proof Carrying Code (PCC)

February 2015Software Protection

47

Network interaction 0-way

SDLC stage Implementation

Commercial availability Mostly academic

Technology specificity Independent

Technical complexity High+

Implementation cost High+

What is it?
• A framework which allows untrusted code to be proved “safe” to execute.
PCC protects clients by guaranteeing certain properties during execution of
otherwise untrusted code.

How is it applied?
• The producer (software vendor) mechanically proves certain safety

properties about the code. A consumer (user/client) who verifies the
correctness of the proof using a checker, is guaranteed claimed safety

2/04/2015

24

PwC

PCC – Overview

February 2015Software Protection

48

PwC

PCC – Techniques

• Necula’s original PCC. Axioms strongly tied to fixed Type System.
Does not guarantee programme will only execute what its specification
states and nothing else.

• Appel’s Foundational PCC. No fixed Type System. Can guarantee
adherence to specification and nothing else.

By safety we mean type and memory safety: private data stays
inaccessible, important data cannot be overwritten, limit consumed
resources, etc.

February 2015Software Protection

49

2/04/2015

25

PwC

PCC – Discussion

• We want the host to be able to verify properties about the application
in some formal way.

• Strength of PCC: Requires a small TCB (proof verifier).

• It has been applied to ensure the JVM’s JIT preserves type-safety on
the resulting native code (Java only type-checks the bytecode, NOT
native code).

• It still is an academic technique and is not formally applied in
commercial software solutions.

• Does not guarantee the code has not been tampered with! Only that
it still does not violate the safety policy.

February 2015Software Protection

50

PwC

Remote Attestation

February 2015Software Protection

51

Network interaction 2-way

SDLC stage Execute

Commercial availability Yes

Technology specificity Independent

Technical complexity Medium

Implementation cost Medium

What is it?
• Remote attestation is a method by which a host (client) authenticates it’s

hardware and software.
The primary goal is to determine the level of trust, secondary goal is to
detected unauthorized changes to software

How is it applied?
• It is part of the TCG standard, listed as one of the key features.

2/04/2015

26

PwC

Remote attestation – Overview

It is a two party system, requiring all the parties to be online when the
protocol is being executed.

February 2015
Software Protection

52

Attestation
service

TPM

Challenger

We need to assume a trusted
communication channel

PwC

Remote attestation – The details

Step 1: a challenger obtains a certificate from a trusted CA that claims
you have a valid TPM on your machine

Step 2: The challenger sends a request to the computer to attest to its
software state

Step 3: Your machine sends back a list of cryptographic hashes stored in
the TPM (called PCR) and their state

Step 4: The challenger checks to see if the current state of the machine
is a valid state. Depending on that check it determines to proceed

February 2015Software Protection

53

2/04/2015

27

PwC

Remote Attestation – Discussion

• Part of the TGC standard

• The architecture consists of two major components: Integrity
measurement architecture and remote attestation protocol.

• Any remote attestation scheme relies on some sort of trusted
hardware component.

• Windows 8.1 includes a remote attestation service

• OpenStack includes the OpenAttestation project (OAT), remote
attestation services.

February 2015Software Protection

55

PwC

Agenda

1. Setting The Scene

2. Software Protection Controls

◦ Unauthorized Analysis

◦ Unauthorized Modification

◦ Unauthorized Copy

◦ Unauthorized Use

3. Discussion

February 2015Software Protection

56

2/04/2015

28

PwC

Watermarking & Fingerprinting

February 2015Software Protection

57

Network interaction O-way

SDLC stage Various*

Commercial availability Yes+

Technology specificity Independent

Technical complexity Low-Medium

Implementation cost Low-Medium

What is it?
• A technique for embedding a unique fingerprint in each software copy (or

set of copies) to identify the originator of unauthorized software
disclosure (traitor tracing)

How is it applied?
• It’s a way of creating an identifier form the application itself (relying on

existing program attributes)

PwC

Watermarking – Overview

February 2015Software Protection

58

2/04/2015

29

PwC

Watermarking & Fingerprinting – Distinctions for
Software

• Watermarking: Embedding an artefact in a programme

• Perceptible or imperceptible

• Generic or uniquely identifying

• Keyed or unkeyed.

• Fingerprinting: Extracting an identifying watermark from a
programme

• Ideal fingerprint system:

• Minimal size cost and maximum stealth and resilience.

• In practice, a tradeoff.

February 2015Software Protection

59

PwC

Watermarking & Fingerprinting – Techniques

Static Watermarks:

• Data: strings in the code

• Code: Order of specific instructions, basic blocks, or procedures.

Dynamic: Given a particular sequence of inputs

• Easter Eggs: Programme enters a particular state (or produces
output)

• Trace: Monitoring instructions executed or addresses used

• Data Structures: State of programme variables after executing the
input

February 2015Software Protection

60

2/04/2015

30

PwC

Watermarking & Fingerprinting – Example

Idea: Embed code in the programme which builds a watermark.

• Extracted by knowledge of “secret key”*

Embedding:

• Fingerprint is embedded into a graph topology G which is split into
several components G1, G2...Gn.

• Each component Gi converted into bytecode which builds it (Ci)

• Bytecode embedded along the execution path taken given the
secret key as input (I0, I1, I2...)

Extraction:

• Run with secret input

• Fingerprint graph built on the heap is extracted and identified

February 2015Software Protection

61

PwC

Watermarking & Fingerprinting – Overview (CT)

February 2015Software Protection

62

2/04/2015

31

PwC

Watermarking & Fingerprinting – Graphs

• Graphical Enumerations are used to transform a watermark integer
into the nth enumeration of a graph.

• Many possible graph families (Directed Parent-Pointer Trees,
Planted Planar Cubic Trees, etc.)

Permutation Encoding

• Method of transforming an integer fingerprint into a permutation.
E.g. 180398 becomes π = ‹9,6,5,2,3,4,0,1,7,8›

2015Software protection

63

PwC

Watermarking & Fingerprinting – Graphs (2)

2015Software protection

64

• Permutation encoded using a Permutation Graph (Singly linked

circular list). Each element in list has 2 pointers (data and list).

• list[i].dataPtr = π[i].

• list[i].listPtr = (i+1) mod n

Example: Permutation Graph encoding an integer.

In practice: Limited stealthiness.

2/04/2015

32

PwC

Watermarking & Fingerprinting – products

Google Content ID (fingerprinting)*

• ProMedia Carbon, a universal transcoding solution used by many
media companies generates a unique content-ID during media
production.

• Media owners upload the ID with a “Usage Policy” describing how to
handle matched content.

• Offending uploads to youtube are either blocked or enrolled in Ad-
revenue generation schemes.

• Gracenote+ (Tribune) (fingerprinting)

February 2015Software Protection

65

PwC

Watermarking & Fingerprinting– Discussion

• Used widely, in part due to its relative lightweight, non-intrusiveness
and partly due to its unique value.

• Currently used more for media (content) than software. Software is
often linked to a fingerprint of the execution environment (Hardware
serial numbers, Mac address)*

• Closely related to steganography

• Must be robust in the face of transformations (e.g. obfuscations,
change resolution, etc.).

February 2015Software Protection

66

2/04/2015

33

PwC

DRM – Overview

February 2015Software Protection

67

Network interaction 0- or 2-way

SDLC stage After deployment

Commercial availability Yes

Technology specificity Independent

Technical complexity Medium

Implementation cost Medium

What is it?
• Digital Rights Management (DRM) is a class of

technologies used to enforce copyright over digital content
after distribution. In essence it’s a set of access controls
(rights can vary per user).

How is it applied?
• By including tags in the content or using some form of data

encryption
• By enforcing strict licensing

PwC

DRM – Overview

February 2015Software Protection

68

2/04/2015

34

PwC

DRM – Classical examples

• Use persistent online authentication

• Make software unusable as soon as an illegal copy is detected

• Require some derivative of the product key to decrypt digital content

• Limit the number of installations

- Bind a total of installations to a product key and verify this online

February 2015Software Protection

69

PwC

DRM – Real world example: FairPlay

DRM technology introduced by Apple to protect their multimedia
content

• Fairplay-protected files are regular mp4 containers with an
encrypted AES AAC audio stream. The master key to decrypt the
audio stream is included with the protected file, but the key itself is
also encrypted with a ‘user key’ (unique per user).

• Keys are stored with the users’ information on Apple’s servers. Only
authorized iTunes can obtain the ‘user key’ and play the songs
(online). Each iPod has his own encrypted key storage to hold those
‘user keys’ (offline).

February 2015Software Protection

70

2/04/2015

35

PwC

DRM – Real world example: Netflix (1)

Netflix and EME (Encrypted Media Extension - W3C)

• Provides a specification for communicating between a web browser
and a DRM agent, and allows for playing back DRM-wrapped digital
content

• MPEG-DASH and MPEG-CENC (Common encryption) in the MPEG
standard make it possible to play back protected (encrypted)
content. Both of these are included in the HTML5 EME standard

February 2015Software Protection

71

PwC

DRM – Real world example: Netflix (2)

What does it include?

• It provides simple ‘clear key decryption’ to ‘complex license key
exchanges’

• An API, no “full blown” DRM solution.

Model is the following components:

• Key System: A Content production DRM mechanism

• Content Decryption Module: A client side component to play back
encrypted content

• License server: Interacts with CDM to provide decryption keys

• Packaging service: Encodes and encrypts media for end user.

February 2015Software Protection

72

2/04/2015

36

PwC

DRM – Real world example: Netflix (3)

February 2015Software Protection

73

PwC

DRM – Discussion

• Collection of techniques used to accomplish content management

• Currently mostly a legal tool. Implementations are not fully resistant
to bypass.

• DRM as a concept is technology independent

• Different targets need different DRM solutions (web video vs music
streaming)

February 2015Software Protection

74

2/04/2015

37

PwC

Timed-Release Encryption (TRE)

February 2015Software Protection

75

Network interaction 0-way

SDLC stage Distribution+

Commercial availability Mostly academic

Technology specificity Independent

Technical complexity Low-

Implementation cost Low

What is it?
• A technique of encrypting content and publishing it such that it can only be

decrypted at a specified later date. Can be used to ensure publicly disclosed
(encrypted) votes are not “opened” until a predetermined date, bids in an auction,
etc.

How is it applied?
• No definitive way of applying it. Keys -and possibly accompanying artifacts- are

created and used as normal to encrypt the data to-be released. When present, the
artifacts are also released to enable decryption at the desired time.

PwC

TRE - (Rivest time-lock puzzle)

• Rivest, Shamir, and Wagner created and published a challenge in
1999 which should only be decryptable in 2033. Relies on computing

2^(2^t) (mod n)

Solved by computing t successive squarings modulo n, a non-
parallelizable calculation.

Values of n and t chosen assuming Moore’s law will produce sufficiently
powerful chips to complete the calculations by the desired decryption
date*.

February 2015Software Protection

76

2/04/2015

38

PwC

TRE – Discussion

• Still academic for now.* HP Labs in Bristol created Time Vault a
service for timed release of confidential information+

• Practical implementations require TTP

• Cleverly designed puzzles exploit Moore’s law to rule out TTP.
Probably low accuracy. More novelty for now.

• Useful real-world applications (elections, etc.)

• Identity-Based Encryption (IBE) schemes have become the basis for
all proposed Time-release schemes.

• The puzzle and private keys can be generated independently of
development.

February 2015Software Protection

77

PwC

Agenda

1. Setting The Scene

2. Software Protection Controls

◦ Unauthorized Analysis

◦ Unauthorized Modification

◦ Unauthorized Copy

◦ Unauthorized Use

3. Discussion

February 2015Software Protection

78

2/04/2015

39

PwC

Licensing

February 2015Software Protection

79

Network interaction 2-Way

SDLC stage Implementation

Commercial availability Yes

Technology specificity Independent

Technical complexity Low

Implementation cost Low-Medium

What is it?
• A “software license” is a concept to govern the use and redistribution of

software. It grants the user certain legal rights to use the software

How is it applied?
• The translation results mostly in some form of usage protection.

This in turn is then translated into a “license key scheme”, that requires
the user to verify his or her installation.

• A common way is to use persistent online authentication.

PwC

Licensing - Overview

- The general concept.

- Enter a product key on installation.

- Verify the product key and perform “activation”

- Create key file

February 2015Software Protection

80

Client
License server

Activation: Phase 1

Activation: Phase 2

Authentication check

Authentication check

2/04/2015

40

PwC

Different licensing schemes.

Floating

• Active

Floating

• Passive

Node
lock

• Active

Node
lock

• Passive

February 2015Software Protection

81

PwC

Licensing - Applications

• Dongle

- Hardware key containing serial number required for the software
to run

• Product activation

- Requiring the user to verify the license by entering a product key

- Binding software to execution environment (via fingerprinting)

- Restricting the number of times an application can be run

• Keyfile

- A file with the activation key that is needed to run the software

February 2015Software Protection

82

2/04/2015

41

PwC

Licensing – Discussion

For licensing to be effective, it must be inherent to the functional flow of
the application. If not, the license check could be patched out.

Thinking about licensing should be done early in the SDLC

February 2015Software Protection

83

PwC

Diversification

February 2015Software Protection

84

Network interaction 0-way

SDLC stage Build

Commercial availability Yes

Technology specificity Independent

Technical complexity Medium

Implementation cost Medium

What is it?
• Transformation techniques to generate functionally identical

yet distinct binary instances from source code. It offers
probabilistic protection against Break Once Run Everywhere
(BORE) attacks.

How is it applied?
• Transformations are applied at the source code, normally via

a seeded diversifying compiler.

2/04/2015

42

PwC

Diversification - Overview

February 2015Software Protection

85

Compiler
Source
code

Secret key

P1

P2

P3

...

Pn

PwC

Diversification – Techniques

Transformations include:

• Layout randomizations: Basic blocks are reordered

• Control Flow Flattening

• Opaque predicates

• Branch functions

February 2015Software Protection

86

2/04/2015

43

PwC

Diversification – Example: Opaque predicates

An opaque predicate is an expression used in a conditional clause but
which always evaluates to the same a-priori known value, e.g.

x=5;

if (x % 2) > 9 {

// never true this code will never be executed. Good place
to add watermarking code/data.

} else {

// always true

}

Trivial opaque predicates may be optimized away by the compiler or a
sophisticated attacker’s reverse engineering framework (including
abstract interpretation)

February 2015Software Protection

87

PwC

Diversification – Example: Opaque predicates

More realistic opaque predicate. Given:

• Distinct primes, P and Q;

• Two arbitrary, distinct positive numbers n, m;

• Any two variables x and y from the source code;

The following expression will always evaluate to false:

P * ((n| x)**2) != Q * ((m | y)**2)

February 2015Software Protection

88

2/04/2015

44

PwC

Diversification – Challenges

Diversification poses 2 main problems to software vendors:

• Software updates: Partial (delta) updates must be tailored to each
instance. Full updates preferable.

• Bug reporting: Bug reports must be processed (normalized) before
they can be used.

February 2015Software Protection

89

PwC

Patch diversification – case study

Problem:

• Crackers* compare (binary diff) pre-patch and post-patch versions
of binaries (patch Tuesday) to determine details of the patched
vulnerability allowing them to develop exploit code (exploit
Wednesday) to use on still unpatched systems.

• Crackers use the same collusion attack to port their cheats or cracks
from older versions of games to newer patched versions.

February 2015Software Protection

90

2/04/2015

45

PwC

Patch diversification – diversifying transforms

Pool of diversifying transformations:

• Code layout randomization

• Partial control flow flattening

• Conditional branch flipping

• Two-way Opaque Predicate insertion

February 2015Software Protection

91

PwC

Patch diversification - Approach

Starting with the patched programme, V1, 18 diversifying iterations
were run.

• Run BinDiff on Vi and Vi-1

• Unmatched procedure: Keep same strategy (BinDiff thwarted)

• Matched procedure with different signature: Extend strategy to new
signature

• Matched procedure with same signature: Try different strategy for
same signature (BinDiff not thwarted)

February 2015Software Protection

93

2/04/2015

46

PwC

Patch diversification – diversification strategy

Selection of diversifying transforms is determined by a rules table. For
example:

• Conditional branches may be flipped, in any iteration, in any
procedure matched by BinDiff’s “Hash Matching”* signature.

• After the first iteration, two-way opaque predicates may be inserted
in or before basic blocks which are not executed (cold code) in any
procedure matched by BinDiff’s “Edges Flowgraph” signature.

• Log each procedure’s diversification strategy

February 2015Software Protection

94

PwC

Patch diversification – diversifying transforms

• Branch function and call function insertion*: Direct control transfers
(jump or fall-through) are rewritten as calls to a branch function with a
parameter which allows it to transfer control to the correct location.

February 2015Software Protection

95

2/04/2015

47

PwC

Patch diversification – Results

• No diversification: 99% match unchanged procedures.

• After 18 iterations, BinDiff matched fewer than 3% of the code.
Code-size overhead is 30-40%.

• Execution overhead below 5% until iteration 16, then 115%.

• Thwarting diffing tools is possible with acceptably low execution
overhead but large increase in patch size.

• Diversification could be identified with code normalization tools.
Part of the constant arms-race escalation in software protection.

February 2015Software Protection

96

PwC

Diversification - Discussion

• Performed by a diversifying compiler.

• May leverage programmer annotations or compiler flags only.

• Still mainly academic (including more “industry-minded” Microsoft
Research) though commercial products exist (e.g. whiteCryption’s
Secure Key Box is available in diversified form to prevent development
of universal tampering schemes.)

• Not currently used as an end in-itself, rather a property of
obfuscating, watermarking, or white-box crypto transformations used.

• Has applications in robustness and survivability which are currently
ignored

February 2015Software Protection

97

2/04/2015

48

PwC

Logging

February 2015Software Protection

98

Network interaction 1-Way

SDLC stage Deployment

Commercial availability Yes*

Technology specificity Independent

Technical complexity Low

Implementation cost Medium*

What is it?
• The ability to log events on an untrusted host in such a way that events

captured before a point in time (e.g. compromise) are tamper-evident

How is it applied?
• Log events are cryptographically linked on the host and intermittently

transmitted to a TTP for secure storage and validation.

PwC

Logging – Overview

February 2015Software Protection

99

2/04/2015

49

PwC

Logging – Properties

There are many desirable properties

• Forward-security: Compromising the log system gives you no
information about previous entries (secrecy). Attempts to modify them
are detected (integrity)+

• Use of a TTP (or not)

• Seekability of log entries (i.e. fast verification of individual log
entries without the need to verify an entire chain)*

February 2015Software Protection

100

PwC

Logging – The truth..

February 2015Software Protection

101

2/04/2015

50

PwC

Logging – Discussion

• Online logging a possibility

• Recommended to prevent attackers from physically destroying log
files. Hybrid approach of regularly dispatching log entries rather
than continuously.*

• Secure logging is a legal requirement of numerous regulatory bodies
(e.g. PCI DSS, ISO27001, etc.). Rules for court-admissible evidence
vary.

• Implemented in recent versions of journald (logging component of
systemd) on most linux systems.+

February 2015Software Protection

102

PwC

Agenda

1. Setting The Scene

2. Software Protection Controls

3. Discussion

February 2015Software Protection

103

2/04/2015

51

PwC

Software Protection – Final thoughts

What protection functionality is available in our arsenal?

• Obfuscation: code obfuscation, white-box crypto, code encryption

• Tamper proofing/detection: Anti-debugging, code guards, white-box
crypto, logging, remote attestation

• Traitor tracing: watermarking, fingerprinting

Explicitly ignored: Execution environment protection.

Obfuscation vs. obfuscation:

• Barak’s compiler O(P) -> P’

• code obfuscation transformations o(c) -> c’

February 2015Software Protection

104

PwC

Software Protection – Final thoughts

• Software protection in a malicious host model is an attempt to find
an Obfuscator O(P) -> P’

• Barak’s impossibility result for Obfuscation suggests Software
protection in a malicious host model is not possible*

• Reduced to performing “fuzzy” obfuscation without any underlying
strong security guarantees.

February 2015Software Protection

105

2/04/2015

52

PwC

Software Protection – Final thoughts and
observations

Conversion of multiple levels of protection:

• Perimeter defenses are moving into applications (when this makes
sense): Runtime Application Self-Protection (RASP)

• Available commercial protection solutions combine multiple
techniques for a defense-in-depth solution

• More pervasive deployment of hardened execution environments*
and hardware support for security (GNX, TrustZone, NX)

February 2015Software Protection

106

PwC

Software Protection – Final thoughts

Diversification, watermarking, obfuscation and white-box cryptography
are closely linked concepts. Diversification is also a latent property* of
the other transformations.

• Within commercial products, diversification is not currently an end
in-itself. It remains a property achieved as a result of using
obfuscation, watermarking, or white-box cryptography in an
application.

• Most obvious commercial application is protection of high-value
patch/update details+

February 2015Software Protection

107

2/04/2015

53

PwC

Software Protection – Final thoughts

No single protection technique is sufficient: Commercial products
include:

• Static and dynamic analysis prevention: Obfuscation (varied), Anti-
debugging

• Tamper Detection/prevention: Code guards (checking, repairing)

• Key protection: White-box cryptography implementations

• Traitor tracing: Explicit* (watermarking/fingerprinting) or implicit
via diversification

• BORE Crack Prevention: Diversification (explicit or implicit via
whitebox, obfuscation)

February 2015Software Protection

108

PwC

Software Protection – Final thoughts

• No technical solution for piracy (though controls are an intrinsic
part of the solution)

• Move application to the cloud

• Require hardware dongle (expensive applications)

• Large companies (e.g. Microsoft) combat piracy via:

• Education, Lobbying, Traitor tracing, licensing, etc.

February 2015Software Protection

109

2/04/2015

54

PwC

The different software solutions

Different solutions apply different techniques to protect your software

- RASP (Runtime application self-protection)

- The Engima Protector

- Themida (using SecureEngine)

- WinLicense (using SecureEngine)

- Genode (ARM trustzone)

- HARES

- Intel GNX

February 2015Software Protection

110

PwC

Looking at the future?

We are moving to “cryptographic” way of obfuscating the code

- HARES: Advanced obfuscators that make significantly raise the bar

- Intel SGX: Software guard extensions

- FHE: fully homomorphic encryption

- Working on encrypted data without the need for decryption

- IO: Indistinguishability Obfuscation

- Execute encrypted instructions without revealing them.

February 2015Software Protection

111

2/04/2015

55

PwC

Software Protection – Conclusions

Protection against 4 threats: illegal Analysis, Tampering, Copying, Use

Software-only protection often boils down to a rat race, but still useful.

Many protection techniques are commercially available ; Roll-your own
is not necessarily a bad thing

• Protection strength inversely proportional to popularity

Combination of different techniques makes the breaking of the
combination more difficult.

February 2015Software Protection

113

PwC

BACKUP

February 2015Software Protection

114

2/04/2015

56

PwC

SDLC and software protection

February 2015Software Protection

115

SDLC related activities

Software protection activities

Requirement analysis

Software design

Implementation

Testing

Integration

Deployment

Maintenance

Anti debugging techniques

Software protectors

Validation services

PwC

Applied techniques in commercial products
(brainstorming)

Metaforic Core

Uses:

• Code guards, whitebox, obfuscation,

Used by:

• licensing code (harden against analysis), embedded routers, mobile
applications and medical implants (monitoring for tampering)

February 2015Software Protection

116

2/04/2015

57

PwC

Applied techniques in commercial products
(brainstorming)

arxan:

Uses:

Used by:

February 2015Software Protection

117

