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Introduction

• An implementation-level software vulnerability is a bug in 

a program that can be exploited by an attacker to cause 

harm

• Example vulnerabilities:

o SQL injection vulnerabilities (discussed in other part of the course)

o XSS vulnerabilities (discussed in other part of the course)

o Buffer overflows and other memory corruption vulnerabilities

• An attack is a scenario where an attacker triggers the bug 

to cause harm

• A countermeasure is a technique to counter attacks

• These lectures will discuss memory corruption 

vulnerabilities, common attack techniques, and common 

countermeasures for them
3



Memory corruption vulnerabilities

• Memory corruption vulnerabilities are a class of 

vulnerabilities relevant for unsafe languages

o i.e. Languages that do not check whether programs 

access memory in a correct way

o Hence buggy programs may mess up parts of memory 

used by the language run-time

• In these lectures we will focus on memory corruption 

vulnerabilities in C programs

o These can have devastating consequences
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#include <stdio.h>

int main() {

int cookie = 0;

char buf[80];

printf("buf: %08x cookie: %08x\n", &buf, &cookie);

gets(buf);

if (cookie == 0x41424344)

printf("you win!\n");

}
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Example vulnerable C program
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Example vulnerable C program

#include <stdio.h>

int main() {

int cookie;

char buf[80];

printf("buf: %08x cookie: %08x\n", &buf, &cookie);

gets(buf);

}
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Background: 

Memory management in C

• Memory can be allocated in many ways in C

o Automatic (local variables in functions)

o Static (global variables)

o Dynamic (malloc and new)

• Programmer is responsible for:

o Appropriate use of allocated memory

• E.g. bounds checks, type checks, …

o Correct de-allocation of memory
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Process memory layout

Arguments/ Environment

Stack

Unused and Mapped Memory

Heap (dynamic data)

Static Data 

Program CodeLow addresses

High addresses

Stack grows

down

Heap grows

up
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Memory management in C

• Memory management is very error-prone

• Some typical bugs:

o Writing past the bound of an array

o Dangling pointers

o Double freeing 

o Memory leaks

• For efficiency, practical C implementations don’t detect 
such bugs at run time

o The language definition states that behavior of a buggy 
program is undefined
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Stack based buffer overflow

• The stack is a memory area used at run time to track 

function calls and returns

o Per call, an activation record or stack frame is pushed 

on the stack, containing:

• Actual parameters, return address, automatically allocated local 

variables, …

• As a consequence, if a local buffer variable can be 

overflowed, there are interesting memory locations to 

overwrite nearby

o The simplest attack is to overwrite the return address so 

that it points to attacker-chosen code (shellcode)
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Stack based buffer overflow

Return address f0

Saved Frame Ptr f0

Local variables f0

f0:

…

…
call f1

f1:

buffer[]

…
overflow()

Stack

IP

SP

FP
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Stack based buffer overflow

Return address f0

Saved Frame Ptr f0

Local variables f0

Arguments f1

Return address f1

Saved Frame Ptr f1

f0:

…

…
call f1

f1:

buffer[]

…
overflow()

Stack

Space for buffer

SP

FP

IP
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Injected Code

Stack based buffer overflow

Return address f0

Saved Frame Ptr f0

Local variables f0

Arguments f1

Overwritten address

f0:

…

…
call f1

f1:

buffer[]

…
overflow()

Stack

SP

FP
IP



Very simple shell code

• In examples further on, we will use:

• Real shell-code is only slightly longer:
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LINUX on Intel:

char shellcode[] =

"\xeb\x1f\x5e\x89\x76\x08\x31\xc0\x88\x46\x07\x89\x46\x0c\xb0\x0b"

"\x89\xf3\x8d\x4e\x08\x8d\x56\x0c\xcd\x80\x31\xdb\x89\xd8\x40\xcd"

"\x80\xe8\xdc\xff\xff\xff/bin/sh";



Side-note: endianness

• Intel processors are little-endian
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Stack based buffer overflow

• Example vulnerable program:
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Stack based buffer overflow

• Or alternatively:



Stack based buffer overflow

• Snapshot of the stack before the return:
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Stack based buffer overflow

• Snapshot of the stack before the return:
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Stack based buffer overflow

• Snapshot of the stack before the return:
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\x4c\xff\x12\x00

‘f’ ‘f’ ‘f’ ‘f’

‘f’

0x0012ff4c

0x66666666

0x66

0xfeeb2ecd

0x66666666

\xcd\x2e\xeb\xfe

‘f’ ‘f’ ‘f’ ‘f’
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Stack based buffer overflow

• Lots of details to get right before it works:

o No nulls in (character-)strings

o Filling in the correct return address: 
• Fake return address must be precisely positioned

• Attacker might not know the address of his own string

o Other overwritten data must not be used before return 
from function

o …

• More information in 

o “Smashing the stack for fun and profit” by Aleph One



23

Overview

• Introduction

• Example attacks

o Stack-based buffer overflow

o Heap-based buffer overflow

o Return-to-libc attacks

o Data-only attacks

• Example defenses

o Stack canaries

o Non-executable data

o Control-flow integrity

o Layout randomization

• Other defenses

• Conclusion



Heap based buffer overflow 

• If a program contains a buffer overflow vulnerability for a 

buffer allocated on the heap, there is no return address 

nearby 

• So attacking a heap based vulnerability requires the 

attacker to overwrite other code pointers

• We look at two examples:

o Overwriting a function pointer

o Overwriting heap metadata
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Overwriting a function pointer

• Example vulnerable program:
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Overwriting a function pointer

• And what happens on overflow:
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Overwriting heap metadata

• The heap is a memory area where dynamically 

allocated data is stored

o Typically managed by a memory allocation library that 

offers functionality to allocate and free chunks of 

memory (in C: malloc() and free() calls)

• Most memory allocation libraries store 

management information in-band

o As a consequence, buffer overruns on the heap can 

overwrite this management information

o This enables an “indirect pointer overwrite”-like attack 

allowing attackers to overwrite arbitrary memory 

locations
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Heap management in dlmalloc

Free chunk

Top Heap

grows

with brk()

Forward pointer

Backward pointer

Other mgmt info

User data

Other mgmt info

Chunk in use

Dlmalloc maintains a 

doubly linked list of free 

chunks

When chunk c gets 

unlinked, c’s backward 

pointer is written to 

*(forward pointer+12)

Or: green value is 

written 12 bytes above 

where red value points

c
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Exploiting a buffer overrunTop Heap

grows

with brk() Green value is written 

12 bytes above where 

red value points

A buffer overrun in d 

can overwrite the red 

and green values

•Make Green point to 

injected code

•Make Red point 12 

bytes below a function 

return address

c

d

Stack

RA

Heap
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Exploiting a buffer overrunTop Heap

grows

with brk() Green value is written 

12 bytes above where 

red value points

Net result is that the 

return address points to 

the injected code

c

Stack

RA

Heap



Indirect pointer overwrite

• This technique of overwriting a pointer that is later 

dereferenced for writing is called indirect pointer 

overwrite

• This is a broadly useful attack technique, as it 

allows to selectively change memory contents

• A program is vulnerable if:

o It contains a bug that allows overwriting a pointer value

o This pointer value is later dereferenced for writing

o And the value written is under control of the attacker

31
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Return-into-libc

• Direct code injection, where an attacker injects code as 

data is not always feasible

o E.g. When certain countermeasures are active

• Indirect code injection attacks will drive the execution of 

the program by manipulating the stack

• This makes it possible to execute fractions of code present 

in memory

o Usually, interesting code is available, e.g. libc
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Return-into-libc: overview
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Return-into-libc: overview
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Return-into-libc: overview
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Return-into-libc: overview
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Return-into-libc: overview
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Return-into-libc: overview
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Return-into-libc: overview
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Return-to-libc

• What do we need to make this work?

o Inject the fake stack

• Easy: this is just data we can put in a buffer

o Make the stack pointer point to the fake stack right 

before a return instruction is executed

• We will show an example where this is done by jumping to a 

trampoline

o Then we make the stack execute existing functions to 

do a direct code injection

• But we could do other useful stuff without direct code injection
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Vulnerable program

42



The trampoline

Assembly code of qsort:

Trampoline code
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Launching the attack
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Unwinding the fake stack
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Unwinding the fake stack
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Unwinding the fake stack
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Unwinding the fake stack
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Unwinding the fake stack
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Data-only attacks

• These attacks proceed by changing only data of the 

program under attack

• Depending on the program under attack, this can result in 

interesting exploits

• We discuss two examples:

o The unix password attack

o Overwriting the environment table
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Unix password attack

• Old implementations of login program looked like this:

Password check in login program:

1. Read loginname

2. Lookup hashed password

3. Read password

4. Check if

hashed password = hash (password)

Stack

Hashed password

password

…
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Unix password attack

Password check in login program:

1. Read loginname

2. Lookup hashed password

3. Read password

4. Check if

hashed password = hash (password)

Stack

Hashed password

password

…

ATTACK: type in a password of the form pw || hash(pw)



Overwriting the environment table
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Stack canaries

• Basic idea

o Insert a value right in a stack frame right before the 

stored base pointer/return address

o Verify on return from a function that this value was not 

modified

• The inserted value is called a canary, after the coal mine 

canaries

56
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Stack canaries

Return address f0

Saved Frame Ptr f0
f0:

…

…
call f1

f1:

buffer[]

…
overflow()

Stack

IP

SP

FP

Canary
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Stack based buffer overflow

Return address f0

Saved Frame Ptr f0

Arguments f1

Return address f1

Saved Frame Ptr f1

f0:

…

…
call f1

f1:

buffer[]

…
overflow()

Stack

SP

FP

IP

Canary

Canary



Canary
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Stack based buffer overflow

Return address f0

Saved Frame Ptr f0

Arguments f1

Overwritten address

f0:

…

…
call f1

f1:

buffer[]

…
overflow()

Stack

SP

FP
IP

Canary
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Non-executable data

• Direct code injection attacks at some point execute data

• Most programs never need to do this

• Hence, a simple countermeasure is to mark data memory 

(stack, heap, ...) as non-executable

• This counters direct code injection, but not return-into-libc 

or data-only attacks

• In addition, this countermeasure may break certain legacy 

applications

61
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Control-flow integrity

• Most attacks we discussed break the control flow as it is 

encoded in the source program

o E.g. At the source code level, one always expects a 

function to return to its call site

• The idea of control-flow integrity is to instrument the code 

to check the “sanity” of the control-flow at runtime
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Example CFI at the source level

• The following code explicitly checks whether the cmp 

function pointer points to one of two known functions:
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Example CFI with labels
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Layout Randomization

• Most attacks rely on precise knowledge of run time 

memory addresses 

• Introducing artificial variation in these addresses 

significantly raises the bar for attackers

• Such adress space layout randomization (ASLR) is a 

cheap and effective countermeasure
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Example
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Overview
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Need for other defenses

• The “automatic” defenses discussed in this lecture are only 

one element of securing C software

• Instead of preventing / detecting exploitation of the 

vulnerabilities at run time, one can:

o Prevent the introduction of vulnerabilities in the code

o Detect and eliminate the vulnerabilities at development 

time

o Detect and eliminate the vulnerabilities with testing
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Preventing introduction

• Safe programming languages such as Java / C# take 

memory management out of the programmer’s hands

• This makes it impossible to introduce exploitable memory 

safety vulnerabilities

o They can still be “exploited” for denial-of-service 

purposes

o Exploitable vulnerabilities can still be present in native 

parts of the application



Detect and eliminate vulnerabilities

• Code review

• Static analysis tools:

o Simple “grep”-like tools that detect unsafe functions

o Advanced heuristic tools that have false positives and 

false negatives

o Sound tools that require significant programmer effort to 

annotate the program

• Testing tools:

o Fuzz testing

o Directed fuzz-testing / symbolic execution
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Conclusion

• The design of attacks and countermeasures has led to an 

arms race between attackers and defenders

• While significant hardening of the execution of C-like 

languages is possible, the use of safe languages like Java 

/ C# is from the point of view of security preferable
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