
Low-level Software

Security: Attacks and

Countermeasures

Prof. Frank PIESSENS

These slides are based on the paper:

“Low-level Software Security by Example” by

Erlingsson, Younan and Piessens

2

Overview

• Introduction

• Example attacks

o Stack-based buffer overflow

o Heap-based buffer overflow

o Return-to-libc attacks

o Data-only attacks

• Example defenses that prevent / detect exploitation

o Stack canaries

o Non-executable data

o Control-flow integrity

o Layout randomization

• Other defenses

• Conclusion

Introduction

• An implementation-level software vulnerability is a bug in

a program that can be exploited by an attacker to cause

harm

• Example vulnerabilities:

o SQL injection vulnerabilities (discussed in other part of the course)

o XSS vulnerabilities (discussed in other part of the course)

o Buffer overflows and other memory corruption vulnerabilities

• An attack is a scenario where an attacker triggers the bug

to cause harm

• A countermeasure is a technique to counter attacks

• These lectures will discuss memory corruption

vulnerabilities, common attack techniques, and common

countermeasures for them
3

Memory corruption vulnerabilities

• Memory corruption vulnerabilities are a class of

vulnerabilities relevant for unsafe languages

o i.e. Languages that do not check whether programs

access memory in a correct way

o Hence buggy programs may mess up parts of memory

used by the language run-time

• In these lectures we will focus on memory corruption

vulnerabilities in C programs

o These can have devastating consequences

4

#include <stdio.h>

int main() {

int cookie = 0;

char buf[80];

printf("buf: %08x cookie: %08x\n", &buf, &cookie);

gets(buf);

if (cookie == 0x41424344)

printf("you win!\n");

}

5

Example vulnerable C program

6

Example vulnerable C program

#include <stdio.h>

int main() {

int cookie;

char buf[80];

printf("buf: %08x cookie: %08x\n", &buf, &cookie);

gets(buf);

}

7

Background:

Memory management in C

• Memory can be allocated in many ways in C

o Automatic (local variables in functions)

o Static (global variables)

o Dynamic (malloc and new)

• Programmer is responsible for:

o Appropriate use of allocated memory

• E.g. bounds checks, type checks, …

o Correct de-allocation of memory

8

Process memory layout

Arguments/ Environment

Stack

Unused and Mapped Memory

Heap (dynamic data)

Static Data

Program CodeLow addresses

High addresses

Stack grows

down

Heap grows

up

9

Memory management in C

• Memory management is very error-prone

• Some typical bugs:

o Writing past the bound of an array

o Dangling pointers

o Double freeing

o Memory leaks

• For efficiency, practical C implementations don’t detect
such bugs at run time

o The language definition states that behavior of a buggy
program is undefined

10

Overview

• Introduction

• Example attacks

o Stack-based buffer overflow

o Heap-based buffer overflow

o Return-to-libc attacks

o Data-only attacks

• Example defenses

o Stack canaries

o Non-executable data

o Control-flow integrity

o Layout randomization

• Other defenses

• Conclusion

11

Stack based buffer overflow

• The stack is a memory area used at run time to track

function calls and returns

o Per call, an activation record or stack frame is pushed

on the stack, containing:

• Actual parameters, return address, automatically allocated local

variables, …

• As a consequence, if a local buffer variable can be

overflowed, there are interesting memory locations to

overwrite nearby

o The simplest attack is to overwrite the return address so

that it points to attacker-chosen code (shellcode)

12

Stack based buffer overflow

Return address f0

Saved Frame Ptr f0

Local variables f0

f0:

…

…
call f1

f1:

buffer[]

…
overflow()

Stack

IP

SP

FP

13

Stack based buffer overflow

Return address f0

Saved Frame Ptr f0

Local variables f0

Arguments f1

Return address f1

Saved Frame Ptr f1

f0:

…

…
call f1

f1:

buffer[]

…
overflow()

Stack

Space for buffer

SP

FP

IP

14

Injected Code

Stack based buffer overflow

Return address f0

Saved Frame Ptr f0

Local variables f0

Arguments f1

Overwritten address

f0:

…

…
call f1

f1:

buffer[]

…
overflow()

Stack

SP

FP
IP

Very simple shell code

• In examples further on, we will use:

• Real shell-code is only slightly longer:

15

LINUX on Intel:

char shellcode[] =

"\xeb\x1f\x5e\x89\x76\x08\x31\xc0\x88\x46\x07\x89\x46\x0c\xb0\x0b"

"\x89\xf3\x8d\x4e\x08\x8d\x56\x0c\xcd\x80\x31\xdb\x89\xd8\x40\xcd"

"\x80\xe8\xdc\xff\xff\xff/bin/sh";

Side-note: endianness

• Intel processors are little-endian

17

Stack based buffer overflow

• Example vulnerable program:

18

Stack based buffer overflow

• Or alternatively:

Stack based buffer overflow

• Snapshot of the stack before the return:

19

Stack based buffer overflow

• Snapshot of the stack before the return:

20

Stack based buffer overflow

• Snapshot of the stack before the return:

21

\x4c\xff\x12\x00

‘f’ ‘f’ ‘f’ ‘f’

‘f’

0x0012ff4c

0x66666666

0x66

0xfeeb2ecd

0x66666666

\xcd\x2e\xeb\xfe

‘f’ ‘f’ ‘f’ ‘f’

22

Stack based buffer overflow

• Lots of details to get right before it works:

o No nulls in (character-)strings

o Filling in the correct return address:
• Fake return address must be precisely positioned

• Attacker might not know the address of his own string

o Other overwritten data must not be used before return
from function

o …

• More information in

o “Smashing the stack for fun and profit” by Aleph One

23

Overview

• Introduction

• Example attacks

o Stack-based buffer overflow

o Heap-based buffer overflow

o Return-to-libc attacks

o Data-only attacks

• Example defenses

o Stack canaries

o Non-executable data

o Control-flow integrity

o Layout randomization

• Other defenses

• Conclusion

Heap based buffer overflow

• If a program contains a buffer overflow vulnerability for a

buffer allocated on the heap, there is no return address

nearby

• So attacking a heap based vulnerability requires the

attacker to overwrite other code pointers

• We look at two examples:

o Overwriting a function pointer

o Overwriting heap metadata

24

Overwriting a function pointer

• Example vulnerable program:

25

Overwriting a function pointer

• And what happens on overflow:

26

27

Overwriting heap metadata

• The heap is a memory area where dynamically

allocated data is stored

o Typically managed by a memory allocation library that

offers functionality to allocate and free chunks of

memory (in C: malloc() and free() calls)

• Most memory allocation libraries store

management information in-band

o As a consequence, buffer overruns on the heap can

overwrite this management information

o This enables an “indirect pointer overwrite”-like attack

allowing attackers to overwrite arbitrary memory

locations

28

Heap management in dlmalloc

Free chunk

Top Heap

grows

with brk()

Forward pointer

Backward pointer

Other mgmt info

User data

Other mgmt info

Chunk in use

Dlmalloc maintains a

doubly linked list of free

chunks

When chunk c gets

unlinked, c’s backward

pointer is written to

*(forward pointer+12)

Or: green value is

written 12 bytes above

where red value points

c

29

Exploiting a buffer overrunTop Heap

grows

with brk() Green value is written

12 bytes above where

red value points

A buffer overrun in d

can overwrite the red

and green values

•Make Green point to

injected code

•Make Red point 12

bytes below a function

return address

c

d

Stack

RA

Heap

30

Exploiting a buffer overrunTop Heap

grows

with brk() Green value is written

12 bytes above where

red value points

Net result is that the

return address points to

the injected code

c

Stack

RA

Heap

Indirect pointer overwrite

• This technique of overwriting a pointer that is later

dereferenced for writing is called indirect pointer

overwrite

• This is a broadly useful attack technique, as it

allows to selectively change memory contents

• A program is vulnerable if:

o It contains a bug that allows overwriting a pointer value

o This pointer value is later dereferenced for writing

o And the value written is under control of the attacker

31

32

Overview

• Introduction

• Example attacks

o Stack-based buffer overflow

o Heap-based buffer overflow

o Return-to-libc attacks

o Data-only attacks

• Example defenses

o Stack canaries

o Non-executable data

o Control-flow integrity

o Layout randomization

• Other defenses

• Conclusion

Return-into-libc

• Direct code injection, where an attacker injects code as

data is not always feasible

o E.g. When certain countermeasures are active

• Indirect code injection attacks will drive the execution of

the program by manipulating the stack

• This makes it possible to execute fractions of code present

in memory

o Usually, interesting code is available, e.g. libc

33

Return-into-libc: overview

34

f1

.

.

return

f2

.

.

return

f3

return

.

.

return

Code MemoryStack

Return addr

Return addr

Return addr

Return addr

Params for f3

Params for f2

Params for f1

SP

IP

Return-into-libc: overview

35

f1

.

.

return

f2

.

.

return

f3

return

.

.

return

Code MemoryStack

Return addr

Return addr

Return addr

Params for f3

Params for f2

Params for f1

SP

IP

Return-into-libc: overview

36

f1

.

.

return

f2

.

.

return

f3

return

.

.

return

Code MemoryStack

Return addr

Return addr

Return addr

Params for f3

Params for f2

Params for f1

SP

IP

Return-into-libc: overview

37

f1

.

.

return

f2

.

.

return

f3

return

.

.

return

Code MemoryStack

Return addr

Return addr

Return addr

Params for f3

Params for f2

Params for f1

SP IP

Return-into-libc: overview

38

f1

.

.

return

f2

.

.

return

f3

return

.

.

return

Code MemoryStack

Return addr

Return addr

Params for f2

Params for f1

SP

IP

Return-into-libc: overview

39

f1

.

.

return

f2

.

.

return

f3

return

.

.

return

Code MemoryStack

Return addr

Return addr

Params for f2

Params for f1

SP

IP

Return-into-libc: overview

40

f1

.

.

return

f2

.

.

return

f3

return

.

.

return

Code MemoryStack

Return addr

Params for f1

SP

IP

Return-to-libc

• What do we need to make this work?

o Inject the fake stack

• Easy: this is just data we can put in a buffer

o Make the stack pointer point to the fake stack right

before a return instruction is executed

• We will show an example where this is done by jumping to a

trampoline

o Then we make the stack execute existing functions to

do a direct code injection

• But we could do other useful stuff without direct code injection

41

Vulnerable program

42

The trampoline

Assembly code of qsort:

Trampoline code

43

Launching the attack

44

Unwinding the fake stack

45

VirtualAlloc

.

.

return

.

.

.

InterlockedEcxh

ange

return

.

.

.

Code Memory

SP

Unwinding the fake stack

46

VirtualAlloc

.

.

return

.

.

.

InterlockedEcxh

ange

return

.

.

.

Code Memory

SP

IP

Unwinding the fake stack

47

VirtualAlloc

.

.

return

.

.

.

InterlockedEcxh

ange

return

.

.

.

Code Memory

SP

IP

Unwinding the fake stack

48

VirtualAlloc

.

.

return

.

.

.

InterlockedEcxh

ange

return

.

.

.

Code Memory

SP
IP

Unwinding the fake stack

49

VirtualAlloc

.

.

return

.

.

.

InterlockedEcxh

ange

return

.

.

.

Code Memory

SP

IP

50

Overview

• Introduction

• Example attacks

o Stack-based buffer overflow

o Heap-based buffer overflow

o Return-to-libc attacks

o Data-only attacks

• Example defenses

o Stack canaries

o Non-executable data

o Control-flow integrity

o Layout randomization

• Other defenses

• Conclusion

Data-only attacks

• These attacks proceed by changing only data of the

program under attack

• Depending on the program under attack, this can result in

interesting exploits

• We discuss two examples:

o The unix password attack

o Overwriting the environment table

51

52

Unix password attack

• Old implementations of login program looked like this:

Password check in login program:

1. Read loginname

2. Lookup hashed password

3. Read password

4. Check if

hashed password = hash (password)

Stack

Hashed password

password

…

53

Unix password attack

Password check in login program:

1. Read loginname

2. Lookup hashed password

3. Read password

4. Check if

hashed password = hash (password)

Stack

Hashed password

password

…

ATTACK: type in a password of the form pw || hash(pw)

Overwriting the environment table

54

55

Overview

• Introduction

• Example attacks

o Stack-based buffer overflow

o Heap-based buffer overflow

o Return-to-libc attacks

o Data-only attacks

• Example defenses

o Stack canaries

o Non-executable data

o Control-flow integrity

o Layout randomization

• Other defenses

• Conclusion

Stack canaries

• Basic idea

o Insert a value right in a stack frame right before the

stored base pointer/return address

o Verify on return from a function that this value was not

modified

• The inserted value is called a canary, after the coal mine

canaries

56

57

Stack canaries

Return address f0

Saved Frame Ptr f0
f0:

…

…
call f1

f1:

buffer[]

…
overflow()

Stack

IP

SP

FP

Canary

58

Stack based buffer overflow

Return address f0

Saved Frame Ptr f0

Arguments f1

Return address f1

Saved Frame Ptr f1

f0:

…

…
call f1

f1:

buffer[]

…
overflow()

Stack

SP

FP

IP

Canary

Canary

Canary

59

Stack based buffer overflow

Return address f0

Saved Frame Ptr f0

Arguments f1

Overwritten address

f0:

…

…
call f1

f1:

buffer[]

…
overflow()

Stack

SP

FP
IP

Canary

60

Overview

• Introduction

• Example attacks

o Stack-based buffer overflow

o Heap-based buffer overflow

o Return-to-libc attacks

o Data-only attacks

• Example defenses

o Stack canaries

o Non-executable data

o Control-flow integrity

o Layout randomization

• Other defenses

• Conclusion

Non-executable data

• Direct code injection attacks at some point execute data

• Most programs never need to do this

• Hence, a simple countermeasure is to mark data memory

(stack, heap, ...) as non-executable

• This counters direct code injection, but not return-into-libc

or data-only attacks

• In addition, this countermeasure may break certain legacy

applications

61

62

Overview

• Introduction

• Example attacks

o Stack-based buffer overflow

o Heap-based buffer overflow

o Return-to-libc attacks

o Data-only attacks

• Example defenses

o Stack canaries

o Non-executable data

o Control-flow integrity

o Layout randomization

• Other defenses

• Conclusion

Control-flow integrity

• Most attacks we discussed break the control flow as it is

encoded in the source program

o E.g. At the source code level, one always expects a

function to return to its call site

• The idea of control-flow integrity is to instrument the code

to check the “sanity” of the control-flow at runtime

63

Example CFI at the source level

• The following code explicitly checks whether the cmp

function pointer points to one of two known functions:

64

Example CFI with labels

65

66

Overview

• Introduction

• Example attacks

o Stack-based buffer overflow

o Heap-based buffer overflow

o Return-to-libc attacks

o Data-only attacks

• Example defenses

o Stack canaries

o Non-executable data

o Control-flow integrity

o Layout randomization

• Other defenses

• Conclusion

Layout Randomization

• Most attacks rely on precise knowledge of run time

memory addresses

• Introducing artificial variation in these addresses

significantly raises the bar for attackers

• Such adress space layout randomization (ASLR) is a

cheap and effective countermeasure

67

Example

68

69

Overview

• Introduction

• Example attacks

o Stack-based buffer overflow

o Heap-based buffer overflow

o Return-to-libc attacks

o Data-only attacks

• Example defenses

o Stack canaries

o Non-executable data

o Control-flow integrity

o Layout randomization

• Other defenses

• Conclusion

Overview

70

Need for other defenses

• The “automatic” defenses discussed in this lecture are only

one element of securing C software

• Instead of preventing / detecting exploitation of the

vulnerabilities at run time, one can:

o Prevent the introduction of vulnerabilities in the code

o Detect and eliminate the vulnerabilities at development

time

o Detect and eliminate the vulnerabilities with testing

71

Preventing introduction

• Safe programming languages such as Java / C# take

memory management out of the programmer’s hands

• This makes it impossible to introduce exploitable memory

safety vulnerabilities

o They can still be “exploited” for denial-of-service

purposes

o Exploitable vulnerabilities can still be present in native

parts of the application

Detect and eliminate vulnerabilities

• Code review

• Static analysis tools:

o Simple “grep”-like tools that detect unsafe functions

o Advanced heuristic tools that have false positives and

false negatives

o Sound tools that require significant programmer effort to

annotate the program

• Testing tools:

o Fuzz testing

o Directed fuzz-testing / symbolic execution

74

Overview

• Introduction

• Example attacks

o Stack-based buffer overflow

o Heap-based buffer overflow

o Return-to-libc attacks

o Data-only attacks

• Example defenses

o Stack canaries

o Non-executable data

o Control-flow integrity

o Layout randomization

• Other defenses

• Conclusion

Conclusion

• The design of attacks and countermeasures has led to an

arms race between attackers and defenders

• While significant hardening of the execution of C-like

languages is possible, the use of safe languages like Java

/ C# is from the point of view of security preferable

75

