WWW.pwWc.com

Secure Development
LifeCycles (SDLC)

Feb 2014 Bart De Win

SecAppDev 2014

pwec

Bart De Win ?

15+ years of Information Security Experience

*Ph.D. in Computer Science - Application Security

*Author of >60 scientific publications
*ISC2 CSSLP certified

*Senior Manager @ PwC Belgium:
*Expertise Center Leader Secure Software
*(Web) Application tester (pentesting, arch. review, code review, ...)
Trainer for several courses related to secure software
*Specialized in Secure Software Development Lifecycle (SDLC)
« OWASP OpenSAMM co-leader

* Contact me at bart.de.win@be.pwc.com

Secure Development LifeCycles (SDLC) February 2014
SecAppDev 2014 2

l Agenda

. Motivation

1
2. Process Models
3

. Maturity Models
4. Agile Development
5. Conclusion

|
Application Security Problem

| (1s 1T okav To DO) |- —
SPEED IS | | THINGS WRONG TF | || [um...| [NOW IT'™M ALL
THE KEY TO ; WE'RE REALLY, ¥ l NO. . CONFUSED.W
SUCCESS. REALLY FAST? £ THANK YOU
g —— i VERY MUCH.
B : S
§' 3 i =
Copyright 3 268688 United Feature Syndicate, Inc. ’
Redistribution in whole or in part prohibited
Adaptabilit
. Technology stacks p Y
Software complexity Training
Better

Growing connectivity

Mobile Faster

Cloud

75% of vulnerabilities are application related

Secure Development LifeCycles (SDLC) February 2014
SecAppDev 2014 4

|
Application Security Symbiosis

Secure Development LifeCycles (SDLC) February 2014
SecAppDev 2014 5

Application Security during Software Development

) Deploy) Maintain

—

==Bugs ==Flaws ~Cost

Secure Development LifeCycles (SDLC) February 2014
SecAppDev 2014 6

The State-of-Practice in Secure Software
Development

\ i Maintain

Penetrate &
Patch

Problematic, since:
» Focus on bugs, not flaws
* Penetration can cause major harm
* Not cost efficient
» No security assurance
- All bugs found ?
- Bug fix fixes all occurences ? (also future ?)

- Bug fix might introduce new security vulnerabilities

Secure Development LifeCycles (SDLC) February 2014
SecAppDev 2014 7

'SDLC ?

Maintain

Enterprise-wide software security improvement program
 Strategic approach to assure software quality
» Goal is to increase systematicity

« Focus on security functionality and security hygiene

Secure Development LifeCycles (SDLC) February 2014
SecAppDev 2014 8

| SDLC Objectives

To develop (and maintain) software in a
consistent and efficient way with a
demonstrable & standards-
compliant security quality, inline with
the organizational risks.

Secure Development LifeCycles (SDLC) February 2014
SecAppDev 2014 9

| SDLC Cornerstones

Process

Knowledge

Tools &
Components

 Roles & Responsibilities

o Activities
e Deliverables
o Control Gates

o Standards & Guidelines
« Compliance
e Transfer methods

« Development support
 Assessment tools
« Management tools

Training

|
Strategic ?

Organizations with a proper SDLC will experience
an 80 percent decrease in critical vulnerabilities

Organizations that acquire products and services
with just a 50 percent reduction in vulnerabilities
will reduce configuration management and
incident response costs by 75 percent each.

Secure Development LifeCycles (SDLC) February 2014
SecAppDev 2014 11

I
Does it really work ?

Vulnerabilities disclosed three years after release

187

91% DECREASE

A
[1
34
T—
3
I T T 1
SQL Server
HiRraR Vulnerabilities disclosed one year after release
So : An isbyJ
urce alysis byJeff. 200
45% DECREASE
242
1
' L 157
119
66 M—_—
Source: Browser Vu - _
I I I I 1
Windows XP Windows Vista 0os| osll osli
Before SDL After SDL
Source: Windows Vista One Year Vulnerability Report, Micrasoft Security Blog, Jan23, 2008

Secure Development LifeCycles (SDLC)
SecAppDev 2014

February 2014
12

(Some) SDLC-related initiatives

M'MMMMMM

« Core training « Analyze « Threat « Specify tools
security and modeling « Enforce banned testing Flnal securlty executlon
risk « Attack surface functions « Verify threat review
« Define quality analysis « Static analysis models/attack « Release archive
gates surface
«Microsoft SDL

+CLASP

*TSP-Secure

:Ux O‘ \1 -

Il QU REMENTS | | ARCHITECTURE TEST PLANS AND FEEDBACK FROM|
ISE CASES

*TouchPoints

% SAFECode

" P vare Assurance Forum for Excellence

100
2111

NIST

National Institute of
Standards and Technology

SP800-64

Gartner.

LM M

1
1
1000 Dnvmg Secuntg and Integntg

*SSE-CMM

*BSIMM

Software Engineering Institute | CarnegieMellon

Secure Development LifeCycles (SDLC) o G AS S P
SecAppDev 2014

Software Assurance

Maturity Model

A guide to building security into software development
Verson - 1.0

February 2014
13

l Agenda

1. Motivation

2. Process Models
3. Maturity Models
4. Agile Development
5. Conclusion

| Selected Example: Microsoft SDL (SD3+C)

Requirements

Implementation) Verification Release

Establish Security | Establish Design Use Approved

Dynamic Incident | |
Analysis Response Plan

Requirements Requirements Tools

Core Security Create Quality Analyze Attack

Deprecate Unsafe fuz
Training Gates / Bug Bars Surface

Functions Testing

h

Final Security ncident |
Review esponse Plan |

Security & Privacy Threat Static

Attack Surface Release
Risk Assessment Modeling

Analysis Review Archive

Secure Development LifeCycles (SDLC) February 2014
SecAppDev 2014

15

Training

Training
Requirements
Design
Implementation
Verification

Release
Response

NooRrwb A

Secure design
Threat modeling
Secure coding
Security testing

Privacy

Secure Development LifeCycles (SDLC)
SecAppDev 2014

L7
o :?\.

February 2014
16

Requirements

f

NoOaRrON-~

Training
Requirements
Design
Implementation
Verification
Release

Response

. . / X \)‘ v

support costs for improving /e’
security and privacy are
consistent with business

Secure Development LifeCycles (SDLC)
SecAppDev 2014

Project inception

When you consider security and
privacy at a foundational level

Cost analysis

" What'sthe

"" -

-/

needs

(hazard? £
,"‘; c. % G

Determine if development and - _+%

February 2014
17

Noabkwn =

T Establish and follow best practices for
" N Design ,

+ secure- codlng %
best practices -

Training
Requirements
Design
Implementation Sl
Verification
[) []
Release Risk analysis
Response
|t e e S e T R e |
: Identify Input paths |
: . |
Icdex attack surface | .
| | Threat modeling
| |
| |
i { ! ! } i
| e st s aciies || STRIDE
l J 1 ' | !
| |
m:(ng::as Folmﬁam dentify arpas
B s T
binding threugh cods
Secure Development LifeCycles (SDLC) February 2014

SecAppDev 2014 18

Implementation

| Creating documentation and tools for users

that address security and privacy

0 l
»

\ ii b

1. Training
2. Requirements
3. Design
4. Implementation
5. Verification . .
6. Release Establish and follow best practices for
7. Response development
1. Review available information resources
2. Review recommended development tools
Define, communicate and document all best
practices and policies
Secure Development LifeCycles (SDLC) February 2014

SecAppDev 2014 19

Verification
I

Security and privacy testing

1. Training
2. Requirements f
3. Design '
4. Implementation
5. Verification 1. Confidentiality, integrity and availability of the
6. Release software and data processed by the software
7. Response

2. Freedom from issues that could result in

security vulnerabilities
Security push
Secure Development LifeCycles (SDLC) | ‘ . ‘ February 2014

SecAppDev 2014 20

Release

Nooakrwd-~

Training
Requirements
Design
Implementation
Verification
Release

Response

Secure Development LifeCycles (SDLC)
SecAppDev 2014

Public pre-release review

1. Privacy

2. Security .

CELLULAR

SMALL
FLASHLIGHT

N
; EXTRA BATTERIES
ADHESIVE ; [\ PHONE T
=1 : S

\ DISPOSABLE
IN\—" GLOVES

TS

2

Y -

i \(z
-

Preparation for

incident response

February 2014
21

Release

| [[J [[
Final security and privacy review

1. Training
2. Requirements \
3. Design ‘
4. Implementation
5. \Verification Outcomes:
6. Release d
7. Response - Passed FSR
- Passed FSR with exceptions
- FSR escalation
Release to manufacturing/release to web
Sign-off process to ensure security, privacy and other policy compliance
Secure Development LifeCycles (SDLC) February 2014

SecAppDev 2014 22

Response

NN =

o Execute Incident Response Plan
-nl““

Training

Requirements

Design

Implementation

Verification

Release

Response
=> able to respond appropriately to reports of vulnerabilities
in their software products, and to attempted exploitation of
those vulnerabilities.

Secure Development LifeCycles (SDLC) February 2014

SecAppDev 2014 23

|
Process Models: wrapup

Microsoft SDL:
Mature, long-term practical experience
Heavyweight, ISV flavour

Several supporting tools and methods
Other process models exist, with their pro’s and con’s

In general, no process will fit your organization perfectly
Mix-and-Match + adaptation are necessary

Secure Development LifeCycles (SDLC) February 2014
SecAppDev 2014 24

l Agenda

1. Motivation

2. Process Models

3. Maturity Models
4. Agile Development
5. Conclusion

|
Why Maturity Models ?

An organization’s behavior changes slowly over time.

e Changes must be iterative while working toward long-term goals

There is no single recipe that works for all organizations

» A solution must enable risk-based choices tailor to the organization

Guidance related to security activities must be prescriptive

* A solution must provide enough details for non-security-people

Overall, must be simple, well-defined, and measurable

Secure Development LifeCycles (SDLC) February 2014
SecAppDev 2014 26

Selected example: OpenSAMM

Software Assurance

Maturity Model

http://www.opensamm.org

Version 1.0, 2009

Secure Development LifeCycles (SDLC)

February 2014
SecAppDev 2014

27

|
Core Structure

SAMM Overview

Software
Development
Business Functions
Construction Verification Deployment

Security Practices

Strategy & Education & Security Design Security Environment
Metrics Guidance Requirements Review Testing Hardening
Policy & Threat Secure Code Vulnerability Operational
Compliance Assessment Architecture Review Management Enablement
Secure Development LifeCycles (SDLC) February 2014

SecAppDev 2014 28

|
Notion of Maturity

o) Implicit starting point representing the activities in the
practice being unfulfilled

1 Initial understanding and ad-hoc provision of the security
practice

2 Increase efficiency and/of effectiveness of the security
practice

3 Comprehensive mastery of the security practice at scale

Secure Development LifeCycles (SDLC) February 2014

SecAppDev 2014 29

I
An example

BEE

CRl cnz

OB]ECTIVE Opportunistically find basic Make code review during
code-level vulnerabilities and development more
other high-risk security issues accurate and efficient

through automation

Mandate comprehensive
code review process to
discover language-level and
application-specific risks

AcTvITIES A.Create review checklists from A.Utilize automated code
known security requirements analysis tools
B. Perform point-review B. Integrate code analysis into
of high-risk code development process

Secure Development LifeCycles (SDLC)
SecAppDev 2014

A.Customize code analysis for
application-specific concerns

B. Establish release gates
for code review

February 2014
30

OpenSAMM also defines

Objective
Activities
Results

Success Metrics
Costs
Personnel
Related Levels

Secure Development LifeCycles (SDLC)
SecAppDev 2014

Security Testing

Require application-specific security testing to ensure baseline security before deployment

ActiviTies
A. Employ application-specific security testing automation

Through either customization of security testing tools, enhancements to generic test case
execution tools, or bulldout of custom test harnesses, project teams should formally iterate
through security requirements and build a set of automated checkers to test the security of
the implemented business logic.

Additionally, many automated security testing tools can be greaty improved in accuracy
and depth of coverage if they are customized to understand more detail about the specific
software interfaces in the project under test. Further, organization-specific concerns from
compliance or technical standards can be codified as a reusable, central test battery to make
audit data collection and per-project mar visibility simpl

ag,
Project teams should focus on builldout of granular security test cases based on the busi-
ness funcdonality of their software, and an organization-level team led by a security auditor
should focus on specification of d tests for compliance and internal standards.

B. Establish release gates for security testing

To prevent software from being released with easily found security bugs, a particular point
In the software development life-cycle should be identified as a checkpoint where an estab-
lished set of security test cases must pass in order to make a release from the project. This
establishes a baseline for the kinds of security tests all projects are expected to pass.

Since adding too many test cases initially can result in an overhead cost bubble, begin by
choosing one or two security issues and include a wide variety of test cases for each with
the expectation that no project may pass If any test fails. Over time, this baseline should be
improved by selecting additional security issues and adding a variety of corresponding test
cases.

Generally, this security testing checkpoint should occur toward the end of the implementa-
tion or testing, but must occur before release.

For legacy systems or inactive projects, an exception process should be created to allow
those projects to continue operations, but with an explicity assigned timeframe for mitiga-
tion of findings. Exceptions should be limited to no more that 20% of all projects.

Resuurs
+ Organization-wide baseline for expected
application performance against attacks

+ Customized security test suites to
improve accuracy of automated aralysis
+ Project teams aware of objective
goals for attack resistance

App’L Success MeTrics

+ >50% of projects using security
testing customizations

+>75% of projects passing all
security tests in past 6 months

Apo’L Costs

+ Buildout and maintenance of
CuStOMIZALONS tO security
testing automation

+ Ongoing project overhead from
security testing audit process

+ Organization overhead from
project delays caused by failed
security testing audits

ApD’L PERSONNEL

+ Architects (I daylyr)

+ Developers (| daylyr)

+ Security Auditors (1-2 daysiyr)
+ QA Testers (1-2 dayslyr)

+ Business Owners (I dayfyr)

+ Managers (1 daylyr)

ReLareo Levers

+ Policy & Compliance - 2
+ Secure Architecture - 3

-February 20

14
31

I
Assessments

ig‘
i

+ Are project teams provided with a list of
recommended third-party components?

- O

4+ Are most project teams aware of secure
design principles and applying them?

+ Do you advertise shared security services
with guidance for project teams?

%

N

4+ Are project teams provided with prescriptive design
pateerns based on their application architecture?

+ Are project teams building software from centrally
controlled pladorms and frameworks?

4+ Are project teams being audited for usage of
secure architecture components?

~N

“w

N -

—

;

ﬁ

Secure Development LifeCycles (SDLC) February 2014
SecAppDev 2014 32

|
Roadmap templates per company type
(ASV)

]

Phase | Secure B
Phase 2 Archcscurs [A
Phase 3
Phase 4 B
_ Design B
Revi I~ ‘
Swrategy & | -
Metrics B —
Code I~
B Review B
Policy & B
Compliance |~ r
Security B
Testing B
Education &
Guidance [
Vulnerabilicy |~
Management |
Threat —
Assessment ' -
Environment
Hardening |
Security -
Requirements |~ Operadonal |~
Enablement |~
Secure Development LifeCycles (SDLC) February 2014

SecAppDev 2014 33

|
BSIMM35 statistics: summary

Secure Development LifeCycles (SDLC)
SecAppDev 2014

Earth (67)
Strategy&Metrics
Config. Mgmt.&Vuln. 3.0 :
. - Compliance&Pol
Mgmt ;,5 . _— p o
Sw.Env. Training
Pen. Testing | Attack Models
Sec Teding‘ "Sec Festures&Design
Code Review ——__ - . StandardsZ&Req'ts

Arch. Analysis

ammmErth [67)

Top Ten (of 67)

StrategyBMetrics
90 e

Config. Mgmt &Vuin.
Mamt.

Complisnce&Policy

Sw. Env. \ Training

Pen. Testing | Attack Models

Sec Tezing Sec Features&Desgn

Code Review - o Standards&Req'ts
Arch. Analysis

w=Top Ten (of 67|

February 2014
34

BSIMM5 statistics: per activity

SSDL Touchpoints Deployme
Activity |Observed| Activity Observed Activity |Observed| Activity |Observed
[SM1.1] 44 [AM1.1] 21 [AAL.1] 56 [PTL.1] 62
[SM1.2] 34 [AM1.2] 43 [AAL1.2] 35 [PT1.2] 51
SM1.3] 34 [AM1.3] 30 [AAL1.3] 24 [PT1.3] 43
[SM1.4] 57 [AM1.4] 12 [AAL1.4] 42 [PT2.2] 24
[SM1.6] 36 [AM1.5] 42 [AA2.1] 10 [PT2.3] 27
SM2.1] 26 [AM1.6] 16 [AA2.2] 8 [PT3.1] 13
SM2.2] 31 [AM2.1] 7 AA2.3] 20 [PT3.2] 8
[SM2.3] 27 [AM2.2] 11 [AA3.1] 11
[SM2.5] 20 [AM3.1] 4 [AA3.2] 4
SM3.1] 16 [AM3.2] 6
SM3.2] 6
'CP1.1] 43 [SFD1.1] 54 'CR1.1] 24 [SE1.1] 34
CP1.2] 52 [SFD1.2] 53 [CR1.2] 34 SE1.2] 61
[CP1.3] 45 [SFD2.1] 26 CR1.4] S50 [SE2.2] 31
‘CP2.1] 24 [SFD2.2] 29 'CR1.5] 23 (SE2.4] 25
[CP2.2] 28 [SFD3.1] 9 [CR1.6] 25 [SE3.2] 10
[CP2.3] 29 [SFD3.2] 13 [CR2.2] 10 [SE3.3] 9
[CP2.4] 25 [SFD3.3] 9 [CR2.5] 15
[CP2.5] 35 [CR2.6] 18
[CP3.1] 14 [CR3.2] 4
‘CP3.2] 11 ‘CR3.3] 6
'CP3.3] 8 ‘CR3.4] 1
[T1.1] 50 SR1.1] 48 'ST1.1 51 [CMVM1.1 59
[T1.5] 29 SR1.2] 43 [ST1.3] 55 CMVM1.2] 59
[T1.6] 23 [SR1.3] 45 ST2.1 27 [CMVM2.1 50
[T1.7] 33 [SR1.4] 27 [ST2.4] 13 [CMVM2.2] 44
[T2.5] 9 [SR2.2] 23 [ST3.1] 11 [CMVM2.3] 30
[T2.6] 13 [SR2.3] 19 [ST3.2] 8 [CMVM3.1] 6
[T2.7] 9 [SR2.4] 19 [ST3.3] 6 [CMVM3.2] 6
[T3.1] - [SR2.5] 22 [ST3.4] = [CMVM3.3] 2
[T3.2] = [SR3.1] 8 [ST3.5] 7
[T3.3] 8 [SR3.2] 12
[T3.4] 9
(T3.5] 5

Secure Development LifeCycles (SDLC)

SecAppDev 2014

February 2014
35

Maturity Models wrapup

OpenSAMM
Comprehensive and rich model, more than just activities
Supporting tools are available

Real-world case studies, but few are openly shared
Other models exist with their pro’s and con’s

Maturity models provide an excellent framework for reasoning on
software assurance, on a strategic level.

Secure Development LifeCycles (SDLC) February 2014
SecAppDev 2014 36

l Agenda

1. Motivation

2. Process Models

3. Maturity Models
4.Agile Development
5. Conclusion

|
Agile Models: Rationale and Fundamentals

« Many traditional, large-scale software development projects are
going wrong

 Combination of business and technical causes
« Software is delivered late in the lifecycle

 Little flexibility during the process

Agile models focus on:
« Frequent interaction with stakeholders
 Short cycles

=> to increase flexibility and reduce risk

Secure Development LifeCycles (SDLC) February 2014
SecAppDev 2014 38

| Agile Models: Scrum

2 SRR 3

feomel TR+ RO. SRS
. o RRERE
J \/Z& q DOaiey SCeum
. I (,0/"'5&!*'\ ?
" |
: O BBER R R
IS £ .
y ” REVIEW L[TENXS " Teaa, po.ofr.
E’s:’ _ SPRNT SPRIVT / ——-———"‘bl Z-—-—D ReTRostEeIVE
i | PLANNING g, ting %c%p@ex! PoTEsTIAL
=% fEET1R4 G o TROOCUCT CoMPONENT
&P:Ci*l—il; Scabe & TIME EHps JIEAELE EEIRESS

Secure Development LifeCycles (SDLC) February 2014
SecAppDev 2014 39

Agile & Secure development: a mismatch ?

Agile Dev. Security
Speed & Flexibility Stable & Rigorous
Short cycles Extra activities

Limited documentation Extensive analysis

Functionality-driven Non-functional

Secure Development LifeCycles (SDLC)
SecAppDev 2014

February 2014
40

| MS SDL-Agile

Basic approach: Fit SLD tasks to the backlog as non-functional stories
Non-Technical vs. Technical

Requirement vs. Recommendation

Each SDL task goes in one of three types of requirements:

Bucket

Secure Development LifeCycles (SDLC) February 2014
SecAppDev 2014 41

|
Every-Sprint Requirements (excerpt)

« All team members must have had security training in the past year
« All database access via parameterized queries

 Fix security issues identified by static analysis

« Mitigate against Cross-Site Request Forgery

« Update Threat models for new features

« Use Secure cookies over HTTPS

« Link all code with the /nxcompat linker option

- Encrypt all secrets such as credentials, keys and passwords

* Conduct internal security design review

Secure Development LifeCycles (SDLC) February 2014
SecAppDev 2014 42

Bucket Requirements (excerpt)

Bucket A: Security Verification

« Perform fuzzing (network/ActiveX/File/RPC/...)
« Manual and automated code review for high-risk code
« Penetration testing

Bucket B: Design Review

« Conduct a privacy review
« Complete threat model training

Bucket C: Planning

 Define or update the security/privacy bug bar
« Define a BC/DR plan

Secure Development LifeCycles (SDLC) February 2014
SecAppDev 2014 43

One-Time Requirements (excerpt)

« Create a baseline threat model
 Establish a security response plan
 Identify your team’s security expert

« Use latest compiler versions

Secure Development LifeCycles (SDLC) February 2014
SecAppDev 2014 44

|
Abuser Stories

Treat application security into software development by writing up
application security risks as stories

« Security stories: “As a developer, I want to prevent SQLi into my
application”

» Not a real user story (not relevant for product owner, but to help the
development team)

 Never really finished
« Cfr MS examples

- Thinking like the bad guy: “User X should not have access to this
type of data”

« Think about what users don’t want to and can’t do, how to trust
users, what data is involved, ...

Secure Development LifeCycles (SDLC) February 2014
SecAppDev 2014 45

Thou shall use Iteration Zero

Many agile projects start with an “Iteration Zero” to

e Get to know the domain B E LI EVE I N

®
This is an opportunity for security too, to
» Assign security responsibles

* Select security tools

* Get the team together

 Choose tools and frameworks

e Determine risk levels

Secure Development LifeCycles (SDLC) February 2014
SecAppDev 2014 46

|
Security Involvement in the Process

Ensure that security-savvy people are involved at important phases:
« Planning game (to enhance/verify requirements)

« Development (daily follow-up)

« Review (to support acceptance)

« Retrospective (to improve dev. Practices for security)

Different profiles can be distinguished:
« Security architect

« Security engineer

« Risk Manager/Governance

Secure Development LifeCycles (SDLC) February 2014
SecAppDev 2014 47

l Agenda

1. Motivation

2. Process Models

3. Maturity Models
4. Agile Development
5. Conclusion

I []
Conclusions

SDLC is the framework for most of this week’s sessions
No model is perfect, but they provide good guidance
Agile development can be improved as well

Take into account all cornerstones

Risk Management is key for rationalizing effort

Secure Development LifeCycles (SDLC) February 2014
SecAppDev 2014 49

