Hands-on Mobile Apps

(Mostly iOS and (also) Android)
SecAppDev 2013

Leuven, Belgium
4-8 March 2013

KRvW Associates, LLC

Development

secappdev.org

am> SecureApplication
-
o

Copyright© 2013 KRvW Associates, LLC

Clear up some misconceptions

Apple’s 10S has been a
huge success for Apple
—Together with Android, they

have re-defined mobile
telephony

Apple has made great
advances 1n security

—They are still far from really
good

—Not even sure 1f they’re
pretty good

Copyright© 2013 KRvW Associates, LLC

Hardware encryption

Each 10S device (as of
3g) has hardware crypto
module

—Unique AES-256 key for
every 10S device

—Sensitive data hardware
encrypted

Sounds brilliant, right?
—Well...

Copyright© 2013 KRvW Associates, LLC 3

Encryption on Android

Android 2.2 has software
based encryption

— Standard Java classes
—Bouncy Castle works too

Android 3.0 and 4.0
include hardware based
encryption

—But our apps can’t rely on this

See http://www.unwesen.de/2011/06/12/
encryption-on-android-bouncycastle/

Copyright© 2013 KRvW Associates, LLC

IOS crypto keys

GID key - Group

ID key

UID key - Unique per dev
Dkey - Default file key

EMF! - Encrypts

entire

file system and H
journal

Class keys - One
protection class

FS

per

—Some derived from UID +

Passcode

Copyright© 2013 KRvW Associates, LLC

IOS NAND (SSD) mapping

Block 0 - Low level boot
loader

Block 1 - Effaceable storage

— Locker for crypto keys,
including Dkey and EMF!

Blocks 2-7 - NVRAM
parameters

Blocks 8-15 - Firmware
Blocks 8-(N-15) - File system

Blocks (N-15)-N - Last 15
blocks reserved by Apple

Copyright© 2013 KRvW Associates, LLC

WHAT?!

Yes, these keys are stored
in plaintext

No, you shouldn t be able
to access them

—But 1n reality...

Copyright© 2013 KRvW Associates, LLC 7

Jailbreaks

Apple’s protection architecture
is based on a massive digital
signature hierarchy

— Starting from bootloader
— Through app loader

DFU mode allows USB vector
for boot loader

— Jailbreaks exploit software
weaknesses in boot loader
protocol

— As of today, works on 6.1 to all
except AS-based systems

— No ATV3, I5, etc.

Copyright© 2013 KRvW Associates, LLC 8

Keychains

Keychain API provided
for storage of small
amounts of sensitive data

—Login credentials,
passwords, etc.

—Encrypted using hardware
AES

Also sounds wonderful
—Wait for it...

Copyright© 2013 KRvW Associates, LLC

Built-in file protection limitations

Pros

— Easy to use, with key
management done by 10S

—Powerful functionality
— Always available
— Zero performance hit

Cons

—For Complete, crypto key 1s
UDID + Passcode

¢ 4 digit PIN problem
Your verdict?

Copyright© 2013 KRvW Associates, LLC

10

Built-in file protection classes

10S (since 4) supports file
protection class

—NSFileProtectionComplete ™Y
—NSFileProtectionCompleteUnless |
Open W
—NSFileProtectionCompleteUntilF
irstUserAuthentication

—NSFileProtectionNone

.
)

L e
™ S 1

Copyright© 2013 KRvW Associates, LLC 11

OWASP Mobile Top 10 Risks

M1- Insecure Data
Storage

M6- Improper Session
Handling

M2- Weak Server Side
Controls

M3- Insufficient
Transport Layer
Protection

M7- Security Decisions
Via Untrusted Inputs

M8- Side Channel Data
Leakage

M4a- Client Side Injection

M5- Poor Authorization
and Authentication

MO- Broken
Cryptography

M10- Sensitive
INnformation Disclosure

Biggest issue: lost/stolen device

Anyone with physical access
to your device can get to a
wealth of data

— PIN 1s not effective
— App data

— Keychains

— Properties

Disk encryption helps, but we
can’t count on users using it

See forensics results

Copyright© 2013 KRvW Associates, LLC

13

Second biggest: insecure comms

Without additional
protection, mobile devices
are susceptible to the
“coffee shop attack”
—Anyone on an open WiFi
can eavesdrop on your data

—No different than any other
WiF1 device really

Your apps MUST protect
your users’ data in transit

Copyright© 2013 KRvW Associates, LLC

14

Let’'s consider the basics

We’ll cover these (from
the mobile top 10)

—Protecting secrets

o At rest

. I
e In transit ’ mlmlh
| St

— Input/output validation
— Authentication
—Session management
—Access control

—Privacy concerns

Copyright© 2013 KRvW Associates, LLC

15

Attack vector: lost/stolen device

Anyone with physical
access to your device can
get to a wealth of data

—PIN 1s not effective
—App data
—Keychains
—Properties

See forensics studies

Your app must protect
users’ local data storage

Copyright© 2013 KRvW Associates, LLC

16

B2t

* Generally a result of:

M1- Insecure Data Storage

* Sensitive data left unprotected [Impact

* Applies to locally stored data + e Confidentiality
cloud synced

of data lost

* (Credentials

Not encrypting data disclosed

Caching data not intended for long-term :

storage * Privacy
violations

Weak or global permissions

Not leveraging platform best-practices * Non-
compliance

| Login

M1- Insecure Data Storage

SharedPreferences credepti = thi
"credentials", |MODE_WORLD_READABLE);
Username

SharedPreferences.Editor editor = credentials

editor.putString("username", fUserName);
editor.putString("password", |password);

Password editor.putBoolean("remember", true);

editor.commit();

V ENE R EANE

OWASP

The Open Wb Applcanon Secunty Progect

public void saveCredentials(String userName, String password) {

dPreferences(

— Very Bad
.edit();

Convenient!

B2t

e Store ONLY what is absolutely
required

* Never use public storage areas (ie-
SD card)

* Leverage secure containers and
platform provided file encryption
APIs

* Do not grant files world readable or
world writeable permissions

M1- Insecure Data Storage
Prevention Tips

Control
#

Description

1.1-1.14

Identify and protect sensitive
data on the mobile device

2.1, 2.2,
2.5

Handle password credentials
securely on the device

SQLlite example

Let’s look at a database
app that stores sensitive

data into a SQL1ite db

—We’ll recover 1t trivially by
looking at the unencrypted
database file

Copyright© 2013 KRvW Associates, LLC

Carrier 2 12:22 PM [

Introduction Local Data Storage

Goat Hills Financial

Please enter login credentials...

Username [

Password f

Remember credentials

Hints Solution

20

Protecting secrets at rest

Encryption 1s the answer,
but i1t’s not quite so simple

— Where did you put that key?

— Surely you didn’t hard code it
into your app

— Surely you’re not counting
on the user to generate and
remember a strong key

Key management is a non-
trivially solved problem

Copyright© 2013 KRvW Associates, LLC

21

How bad is it?

It’s tough to get right

—Key management is
everything

We’ve seen many

examples of failures

— Cit1 and others

Consider lost/stolen device
as worst case
— Would you be confident of

your app/data in hands of
biggest competitor?

Copyright© 2013 KRvW Associates, LLC 22

Static analysis of an app

Explore folders

—./Documents
—./Library/Caches/*
—./Library/Cookies
—./Library/Preferences
App bundle
—Hexdump of binary
—plist files

What else?

Copyright© 2013 KRvW Associates, LLC

23

Examples

Airline app

—Stores frequent flyer data in
plaintext XML file

Healthcare app

—Stores patient data in plist
file

® But it’s base64 encoded for
protection...

Copyright© 2013 KRvW Associates, LLC

TN

X —1-5--- ..

24

Tools to use

Mac tools
—Finder

—1Explorer

—hexdump

—strings

—otool

—otx (otx.osxninja.com)

—class-dump
(iphone.freecoder.org/
classdump en.html)

Copyright© 2013 KRvW Associates, LLC

—Emacs (editor)

Xcode additional tools
—Clang (build and
analyze)

¢ Finds memory leaks and
others

25

What to examine?

See for yourself

—There 1s no shortage of
sloppy applications 1n the
app stores

—Start with some apps that
you know store login
credentials

Copyright© 2013 KRvW Associates, LLC

26

Let’s go further

Consider jailbreaking to
further analyze things

—Get outside of app sandbox

—All OS files exposed
e Keylog, SMS, email
—Tethered vs. untethered

Tools and notes
— Works up to 6.0 on iPhone 4S

® 6.1 and 1Phone 5 expected soon

—RedsnOw and others

Copyright© 2013 KRvW Associates, LLC

wil. AT&T M-Cell = 3:00 AM

@ 1%

JailbreakMe 3.0

www.jailbreakme.com// G

O Jay Freeman (saurik)
Jailbreak by comex. m

JailbreakMe is the easiest way to free
your device. Experience iOS as it could
be, fully customizable, themeable, and
with every tweak you could possibly
imagine.

Safe and completely reversible (just
restore in iTunes), jailbreaking gives you
control over the device you own. It only
takes a minute or two, and as always, it's

27

Further still

Disassembly of binary

—Must get around app store
encryption

® Not so hard
—IDAPTro0 1s your friend

Copyright© 2013 KRvW Associates, LLC

28

Resources

Hacking and Securing iOS Applications, Jonathan
Zdziarski, O’Reilly, 2012

RedsnOw, popular jailbreaking tool, http://
blog.iphone-dev.org

Sogeti tools, http://code.google.com/p/iphone-
dataprotection/, including a PIN brute force tool

Copyright© 2013 KRvW Associates, LLC

29

Attack vector: coffee shop attack

Exposing secrets through
non-secure connections 1s
rampant

— Firesheep description

Most likely attack targets

— Authentication credentials

— Session tokens

— Sensitive user data

At a bare minimum, your app

needs to be able to withstand
a coffee shop attack

Copyright© 2013 KRvW Associates, LLC

30

B2t

M3- Insufficient Transport Layer Protection

* Complete lack of encryption for [Impact

transmitted data _
e Man-in-the-

middle attacks

Yes, this unfortunately happens often

* Weakly encrypted data in transit
* Tampering w/

* Strong encryption, but ignoring B, B o

security warnings
Ignoring certificate validation errors ¢ Confidentiality
Falling back to plain text after failures of data lost

31

B2t

Prevention Tips

M3- Insufficient Transport Layer Protection

e Ensure that all sensitive data [contro

#

Description

leaving the device is 31556

Ensure sensitive data is
protected in transit

encrypted

 This includes data over carrier
networks, WiFi, and even NFC

* When security exceptions are
thrown, it's generally for a
reason...DO NOT ignore them!

32

Exercise - coffee shop attack

This one 1s trivial, but Garmer =229 =
let’s take a 100k ntroduction Remote Authenticat...
In this iGoat exercise, the i

° ease enter ogln creaentais...
user’s credentials are sent

Username (donkey

plaintext

—Simple web server running
on Mac responds

Password f

—1If this were on a public
WiF1, a network sniffer
would be painless to launch

Hints Solution

Copyright© 2013 KRvW Associates, LLC 33

Protecting users’ secrets in transit

Always consider the
coffee shop attack as
lowest common
denominator

We place a lot of faith in
SSL

—But then, 1t’s been subjected
to scrutiny for years

Copyright© 2013 KRvW Associates, LLC

34

Most common SSL mistake

We’ve all heard of CAs

being attacked

—That’s all important, but...

— (Certificate pinning can help.)

Failing to properly verify

CA signature chain

—Biggest SSL problem by far

—Study showed 1/3 of Android |
apps fell to this

Cannot happen by accident

Copyright© 2013 KRvW Associates, LLC

35

How bad is it?

Neglecting SSL on
network comms 18
common

—Consider the exposures

® ogin credentials
e Session credentials
e Sensitive user data

Will your app withstand a
concerted coffee shop
attacker?

Copyright© 2013 KRvW Associates, LLC 36

Attack vector: web app weakness

Remember, modern
mobile devices share a lot
of weaknesses with web
applications

Sl
—Many shared technologies “}.Q;EJ -
n/ s

— A smart phone 1s sort of like
a mobile web browser

® Only worse 1n some regards

Copyright© 2013 KRvW Associates, LLC

37

Input and output validation

Problems abound

— Data must be treated as
dangerous until proven safe

—No matter where 1t comes
from

Examples
— Data 1njection
— Cross-site scripting

Where do you think input
validation should occur?

Copyright© 2013 KRvW Associates, LLC 38

SQL Injection

Most common
injection attack

— Attacker taints input data
with SQL statement

— Application constructs
SQL query via string
concatenation

—SQL passes to SQL
interpreter and runs on
Server

Copyright© 2013 KRvW Associates, LLC

Consider the following
input to an HTML form

—Form field fills in a
variable called
“CreditCardNum”

— Attacker enters
.
¢ __
o or 1=1 —

— What happens next?

39

SQL injection exercise - client side

In this one, a local SQL
db contains some
restricted content

— Attacker can use “SQL1” to
view restricted info

Not all SQL1 weaknesses
are on the server side!

Question: Would db
encryption help?

Copyright© 2013 KRvW Associates, LLC

Carrier 2 2:21 PM

Introduction SQL Injection

Goat Hills Picayune
Fair and Balanced

Search all free-to-read articles...
-

Search

Hints

40

B2t

M5- Poor Authorization and Authentication

* Part mobile, part architecture [Impact

* Some apps rely solely on e Privilege
immutable, potentially e [ation
compromised values (IMEI, IMSI, LGN
UUID) e Unauthorized

* Hardware identifiers persist across dCcess

data wipes and factory resets

* Adding contextual information is
useful, but not foolproof

41

M5-

if (dao.
int
dao.
dao.

bean
retu

bean.
bean.
bean.

Poor Authorization and Authentication

1sDevicePermanentlyAuthorized(devicelD)) {
newSessionToken = LoginUtils.generateSessionToken();
openConnection();
updateAuthorizedDeviceSession(devicelD,

sessionlToken, LoginUtils.getTimeMilliseconds());
setSessionToken(newSessionToken);
setUserName(dao.getUserName(sessionToken));
setAccountNumber(dao.getAccountNumber(sessionToken));
.setSuccess(true);
rn bean;

42

B2t

Prevention Tips

M5- Poor Authorization and Authentication

e Contextual info can enhance Control
things, but only as part of a

Description

4.1-4.6

multi-factor implementation

Implement user
authentication/authorization
and session management

8.4

e Qut-of-band doesn’t work

Authenticate all API calls to
paid resources

when it’s all the same device

e Never use device ID or
subscriber ID as sole
authenticator

43

B2t

M6- Improper Session Handling

* Mobile app sessions are generally [Impact
MUCH longer
* Why? Convenience and usability) an”eg.e
escalation

* Apps maintain sessions via

. HTTP cookies * Unauthorized

dCCess
* OAuth tokens
e SSO authentication services * Circumvent
* Bad idea= using a device identifier licensing and
as a session token payments

44

B2t

M6- Improper Session Handling
Prevention Tips

* Don't be afraid to make users [control[pescription
re-authenticate every so often

1.13 Use non-persistent identifiers

* Ensure that tokens can be e

authentication/authorization

reVOked qUiCkly In the event and session management

of a lost/stolen device

* Utilize high entropy, tested
token generation resources

45

Garden Variety XSS....

@0verride
public void onCreate(Bundle savedInstanceState) {

super.onCreate(savedInstanceState);
setContentView(R. layout.demo);

context = this.getApplicationContext();

webView = (WebView) findViewById(R.1id.demoWebView);

M4- Client Side Injection

With access to:

public class Sms)SInterface implements Cloneable {
Context mContext;

public Sms)SInterface(Context context) {

webView.addlavascriptInterface(new SmsJ)SInterface(thi

ebView.getSettings().setJavaScriptEnabled(true);
"sms)SInterface");

:] mContext = context;
s), }

GetSomelnfo getInfo = new GetSomelnfo();
getInfo.execute(null, null);

}

public String generateHTML(pPtring untrustedData) {

return "Check this out!
" +[E§trusted00t§}]

}

(p_ublic void sendSMS(String phoneNumber, String message) { Y

SmsManager sms = SmsManager.getDefault();
sms.sendTextMessage(phoneNumber, null, message, null, null);

\ J

46

M4- Client Side Injection

Prevention Tips

* Sanitize or escape untrusted data
before rendering or executing it

Control
#

Description

* Use prepared statements for

6.3

Pay particular attention to
validating all data received
from and sent to non-trusted

FhivA narbhv arnne hafAae~

database calls...concatenation is
still bad, and always will be bad

10.1-10.5

Carefully check any runtime
interpretation of code for
errors

* Minimize the sensitive native
capabilities tied to hybrid web
functionality

47

B2t

M7- Security Decisions Via Untrusted Inputs

* (Can be leveraged to bypass [Impact }
permissions and security models

* Consuming

* Similar but different depending on :
paid resources

platform

e iOS- Abusing URL Schemes e Data

* Android- Abusing Intents exfiltration
 Several attack vectors * Privilege

- Malicious apps escalation

* (lient side injection

48

M7- Security Decisions Via Untrusted Inputs

Skype i0OS URL Scheme Handling Issue

HTM.L g Attacker <_|f“rame | Skype app
Script src="skype: .
L embeds handles this
Injection via . 170312345677
iframe . URL Scheme
app call></iframe>

* http://software-security.sans.org/blog/2010/11/08/insecure-handling-url-schemes-apples-ios/

49

B2t

M7- Security Decisions Via Untrusted Inputs

* Check caller’s permissions at
input boundaries

* Prompt the user for additional
authorization before allowing

* Where permission checks
cannot be performed, ensure
additional steps required to
launch sensitive actions

Prevention Tips

Control
#

Description

10.2

Run interpreters at minimal
privilege levels

50

M8- Side Channel Data Leakage

Mix of not disabling platform features and [

Impact
programmatic flaws P

Sensitive data ends up in unintended places ® Data retained
Web caches Indeflnltely

Keystroke logging ° Privacy

Screenshots (ie- i0S backgrounding) Vio|ations
Logs (system, crash)

Temp directories

Understand what 3™ party libraries in your
apps are doing with user data
(ie- ad networks, analytics)

51

M8- Side Channel Data Leakage

Screenshots

] comkrww.iGoat

Name b Date Modified

Sze Kind

& UlkoplicationAutomaticSnapshotDefaul-Porraitjog — Today, 3:32 AW 53KB JPEC image

Logging

try {

} catch (Exception e) {

}

userInfo = client.validateCredentials(userName, password);
if (userInfo.get("success").equals("true"))
launchHome(v);
else {
Log.w("Failed login", EE%erName + "y passonEP;
}

Log.w("Failed login", |userName + + password);

| ® O O [UlApplicationAutomaticSnapshotDefault-P... O

i 5 — i
o \/ oy

Previous hext Zoom

>
Introduction Exercise
Password reset...

In what city were you born?
2

NYC

What is your favorite color?

e
Green)

a/w/E|Rr|T|v|u|I]o]P
Als|o|Flc|H|J|K|L
< BRE00R00 =
.?2123 m return

52

B2t

M8- Side Channel Data Leakage
Prevention Tips

* Never log credentials, PII, or other sensitive data to

Control Description
system logs #

* Remove sensitive data_ before s_creenshots_a_are tak_en, 73 Check whether you are
disable keystroke logging per field, and utilize anti- collecting PII, it may not
caching directives for web content always be obvious

7.4 Audit communication

o ; mechanisms to check for

Debug your apps before releasing them to observe W N

files created, written to, or modified in any way

* Carefully review any third party libraries you
introduce and the data they consume

* Test your applications across as many platform
versions as possible

53

B2t

M10- Sensitive Information Disclosure

We differentiate by stored (M1) vs. [Impact

embedded/hardcoded (M10)

. .
Apps can be reverse engineered Credentials

with relative ease disclosed
Code obfuscation raises the bar, but ¢ Intellectual
doesn't eliminate the risk property
Commonly found “treasures”: exposed
API keys
Passwords

Sensitive business logic

54

M10- Sensitive Information Disclosure

if (rememberMe)
savelredentials(userName, password);
//our secret backdoor account
if (userName.equals("all_powerful")
&& password.equals("iamsosmart”))

launchAdminHome(v);

oublic stotic final double SECRET SAUCEFORMULA = (12344 * 4.35 - 4 4 1.442) * L.221,

55

B2t

M10- Sensitive Information Disclosure
Prevention Tips

* Private API keys are called that Control Description
for a reason...keep them off of
2.10 Do not store any passwords

the Cl |ent or secrets in the application

binarv

* Keep proprietary and sensitive
business logic on the server

* Almost never a legitimate reason
to hardcode a password (if there
iS, you have other problems)

56

Kenneth R. van Wyk
KRvW Associates, LLC

Ken@KRvW.com
http:// www.KRvW.com

Designing & Implementing Secure Applications

Secure
Coding

Principles & Practices

Copyright© 2013 KRvW Associates, LLC

