
Copyright© 2012 KRvW Associates, LLC

The Art of Building Bulletproof
Mobile Apps

3-day Class

Combined iOS and Android edition

Copyright© 2012 KRvW Associates, LLC

Mobile platforms

How secure are today’s
mobile platforms?
–Lots of similarities to web

applications but...
Gold rush mentality
–Developers are on a death

march to produce apps
–Unprecedented rate
–Security often suffers...

2

Copyright© 2012 KRvW Associates, LLC

Mobile app threat model

Many considerations
–Platforms vary substantially
–Similar but still very

different than traditional
web app--even when heavy
with client-side code

– It’s more than just apps
lCloud/network integration
lDevice platform considerations

3

4

Mobile Threat Model

5

Mobile Threat Model

Copyright© 2012 KRvW Associates, LLC

Biggest issue: lost/stolen device

Anyone with physical
access to your device can
get to a wealth of data
– PIN is not effective
– App data
– Keychains
– Properties
Disk encryption helps, but
we can’t count users using it
See forensics results

6

Copyright© 2012 KRvW Associates, LLC

Second biggest: insecure comms

Without additional
protection, mobile devices
are susceptible to the
“coffee shop attack”
–Anyone on an open WiFi

can eavesdrop on your data
–No different than any other

WiFi device really
Your apps MUST protect
your users’ data in transit

7

Copyright© 2012 KRvW Associates, LLC

Typical mobile app

Most mobile apps are
basically web apps
– Clients issue web services

request
lSOAP or RESTful

– Servers respond with XML
data stream

But with more client
“smarts”
Almost all web weaknesses
are relevant, and more

8

Copyright© 2012 KRvW Associates, LLC

OWASP Top-10 (2010)

1.Injection
2.Cross-site scripting
3.Broken authentication

and session management
4.Insecure direct object

reference
5.Cross site request

forgery

6.Security
misconfiguration

7.Insecure crypto storage
8.Failure to restrict URL

access
9.Insecure transport layer

protection
10.Unvalidated redirects

and forwards (new)

9

10

Copyright© 2012 KRvW Associates, LLC

A lot to consider

That’s a lot of mistakes to
avoid (and there are more)
–What are the key differences

between the web list and the
mobile list?

–What assumptions must we
then make in our apps?

–What assumptions are
unsafe?

11

Copyright© 2012 KRvW Associates, LLC

Let’s consider the basics

We’ll cover these (from
the mobile top 10)
–Protecting secrets

lAt rest
l In transit

– Input/output validation
–Authentication
–Session management
–Access control
–Privacy concerns

12

Copyright© 2012 KRvW Associates, LLC

Attack vector: lost/stolen device

Anyone with physical
access to your device can
get to a wealth of data
–PIN is not effective
–App data
–Keychains
–Properties
See forensics studies
Your app must protect
users’ local data storage

13

14

M1- Insecure Data Storage

• Sensitive data left unprotected

• Applies to locally stored data +
cloud synced

• Generally a result of:

• Not encrypting data

• Caching data not intended for long-term
storage

• Weak or global permissions

• Not leveraging platform best-practices

Impact

• Confidentiality
of data lost

• Credentials
disclosed

• Privacy
violations

• Non-
compliance

15

M1- Insecure Data Storage

16

M1- Insecure Data Storage
Prevention Tips

• Store ONLY what is absolutely
required

• Never use public storage areas (ie-
SD card)

• Leverage secure containers and
platform provided file encryption
APIs

• Do not grant files world readable or
world writeable permissions

Control
#

Description

1.1-1.14 Identify and protect sensitive
data on the mobile device

2.1, 2.2,
2.5

Handle password credentials
securely on the device

Copyright© 2012 KRvW Associates, LLC

Local storage on Android

Android phones can
easily be mounted and the
filesystem and data can be
viewed
Passwords, secret keys
and other sensitive data
must never be written to
disk in plaintext

17

Copyright© 2012 KRvW Associates, LLC

SQLlite example

Let’s look at a database
app that stores sensitive
data into a SQLite db
–We’ll recover it trivially by

looking at the unencrypted
database file

18

Copyright© 2012 KRvW Associates, LLC

Protecting secrets at rest

Encryption is the answer,
but it’s not quite so simple
– Where did you put that key?
– Surely you didn’t hard code it

into your app
– Surely you’re not counting

on the user to generate and
remember a strong key

Key management is a non-
trivially solved problem

19

Copyright© 2012 KRvW Associates, LLC

How bad is it?

It’s tough to get right
– Key management is

everything
We’ve seen many
examples of failures
– Citi and others
Consider lost/stolen device
as worst case
– Would you be confident of

your app/data in hands of
biggest competitor?

20

Copyright© 2012 KRvW Associates, LLC

Attack vector: coffee shop attack

Exposing secrets through
non-secure connections is
rampant
– Firesheep description
Most likely attack targets
– Authentication credentials
– Session tokens
– Sensitive user data
At a bare minimum, your app
needs to be able to withstand
a coffee shop attack

21

22

M3- Insufficient Transport Layer Protection

• Complete lack of encryption for
transmitted data

• Yes, this unfortunately happens often

• Weakly encrypted data in transit

• Strong encryption, but ignoring
security warnings

• Ignoring certificate validation errors

• Falling back to plain text after failures

Impact

• Man-in-the-
middle attacks

• Tampering w/
data in transit

• Confidentiality
of data lost

23

M3- Insufficient Transport Layer Protection
Prevention Tips

• Ensure that all sensitive data
leaving the device is
encrypted

• This includes data over carrier
networks, WiFi, and even NFC

• When security exceptions are
thrown, it’s generally for a
reason…DO NOT ignore them!

Control
#

Description

3.1.3.6 Ensure sensitive data is
protected in transit

Copyright© 2012 KRvW Associates, LLC

Coffee shop attack -- credentials

This one is trivial, but
let’s take a look
In this iGoat exercise, the
user’s credentials are sent
plaintext
–Simple web server running

on Mac responds
– If this were on a public

WiFi, a network sniffer
would be painless to launch

24

Copyright© 2012 KRvW Associates, LLC

Protecting users’ secrets in transit

Always consider the
coffee shop attack as
lowest common
denominator
We place a lot of faith in
SSL
–But then, it’s been subjected

to scrutiny for years

25

Copyright© 2012 KRvW Associates, LLC

Passing secrets

In this simple example,
we’ll send customer data
to a proxy server and
intercept via a simulated
coffee shop attack

26

Copyright© 2012 KRvW Associates, LLC

How bad is it?

Neglecting SSL on
network comms is
common
–Consider the exposures

lLogin credentials
lSession credentials
lSensitive user data

Will your app withstand a
concerted coffee shop
attacker?

27

Copyright© 2012 KRvW Associates, LLC

Authentication

28

Verifying a user’s identity
can be tricky
–Passwords
–Hardware tokens
–Biometrics
Each has pros and cons
The mechanics of auth
will reside on the server
–Apps can access securely, or

not...

29

M5- Poor Authorization and Authentication

• Part mobile, part architecture

• Some apps rely solely on
immutable, potentially
compromised values (IMEI, IMSI,
UUID)

• Hardware identifiers persist across
data wipes and factory resets

• Adding contextual information is
useful, but not foolproof

Impact

• Privilege
escalation

• Unauthorized
access

30

M5- Poor Authorization and Authentication

31

M5- Poor Authorization and Authentication
Prevention Tips

• Contextual info can enhance
things, but only as part of a
multi-factor implementation

• Out-of-band doesn’t work
when it’s all the same device

• Never use device ID or
subscriber ID as sole
authenticator

Control
#

Description

4.1-4.6 Implement user
authentication/authorization
and session management
correctly8.4 Authenticate all API calls to
paid resources

Copyright© 2012 KRvW Associates, LLC

How bad is it?

32

Authentication exposures
are common
–Tools like Firesheep make

capture of auth and session
credentials painless

Mobile systems offer no
inherent improvements
over web apps here
– It’s up to the developer

Copyright© 2012 KRvW Associates, LLC

Session management

Web technologies have no
inherent session
management at all
– Controlled and managed by

server side
– Session ID passed to client

and returned with HTTP
responses and requests

Hugely susceptible to
replay
– Think coffee shop...

33

34

M6- Improper Session Handling

• Mobile app sessions are generally
MUCH longer

• Why? Convenience and usability

• Apps maintain sessions via

• HTTP cookies

• OAuth tokens

• SSO authentication services

• Bad idea= using a device identifier
as a session token

Impact

• Privilege
escalation

• Unauthorized
access

• Circumvent
licensing and
payments

35

M6- Improper Session Handling
Prevention Tips

• Don’t be afraid to make users
re-authenticate every so often

• Ensure that tokens can be
revoked quickly in the event
of a lost/stolen device

• Utilize high entropy, tested
token generation resources

Control
#

Description

1.13 Use non-persistent identifiers

4.1-4.6 Implement user
authentication/authorization
and session management
correctly

Copyright© 2012 KRvW Associates, LLC

Session management basics

Web contains no
inherent session
management
Unique ID assigned to
each session on server
ID passed to browser
and returned in each
GET/POST
–JSESSIONID for Java

EE

Once authenticated,
session token is as
powerful as valid
username/password
Must be rigorously
protected
–Confidential
–Random
–Unpredictable
–Unforgeable

36

Copyright© 2012 KRvW Associates, LLC

How bad is it?

Many web apps toss
around session credentials
in plain text
–Firesheep was written to

draw attention to this
Are mobile apps any
better?
–Some are, some aren’t

37

Copyright© 2012 KRvW Associates, LLC

Privacy concerns

Kind of like protecting
secrets, eh?
Yes, but some special
concerns too
Let’s analyze a typical
app
–Finder or iPhone Explorer

38

Copyright© 2012 KRvW Associates, LLC

Attack vector: web app weakness

Remember, modern
mobile devices share a lot
of weaknesses with web
applications
–Many shared technologies
–A smart phone is sort of like

a mobile web browser
lOnly worse in some regards

39

Copyright© 2012 KRvW Associates, LLC

Input and output validation

40

Problems abound
– Data must be treated as

dangerous until proven safe
– No matter where it comes

from
Examples
– Data injection
– Cross-site scripting

Where do you think input
validation should occur?

Copyright© 2012 KRvW Associates, LLC

SQL Injection

Most common
injection attack
–Attacker taints input data

with SQL statement
–Application constructs

SQL query via string
concatenation

–SQL passes to SQL
interpreter and runs on
server

Consider the following
input to an HTML form
–Form field fills in a

variable called
“CreditCardNum”

–Attacker enters
l ‘
l ‘ --
l ‘ or 1=1 --

–What happens next?

41

Copyright© 2012 KRvW Associates, LLC

SQL injection exercise - client side

42

In this one, a local SQL
db contains some
restricted content
–Attacker can use “SQLi” to

view restricted info
Not all SQLi weaknesses
are on the server side!

Question: Would db
encryption help?

Copyright© 2012 KRvW Associates, LLC

Other injection dangers

SQL injection is
common but others
exist
–XML
–LDAP
–Command shell
–Comma delimited files
–Log files

Context is everything
–Must be shielded from

presentation layer
Input validation will
set you free
–Positive validation is

vital

43

Copyright© 2012 KRvW Associates, LLC

Cross-site scripting (XSS)

44

The “go jump in a lake”
problem
– Script data entered into software

and replayed in victim’s context
– Browser cannot tell good from

bad
iOS UIWebView calls can
open these up on client
– Web redirects can further

exacerbate the problem

45

M4- Client Side Injection

Garden Variety XSS…. With access to:

46

M4- Client Side Injection
Prevention Tips

• Sanitize or escape untrusted data
before rendering or executing it

• Use prepared statements for
database calls…concatenation is
still bad, and always will be bad

• Minimize the sensitive native
capabilities tied to hybrid web
functionality

Control
#

Description

6.3 Pay particular attention to
validating all data received
from and sent to non-trusted
third party apps before
processing10.1-10.5 Carefully check any runtime
interpretation of code for
errors

Copyright© 2012 KRvW Associates, LLC

How bad is it?

47

Developers trust too
much, remember?
–Don’t fall for that trap
Consider all the data in
your system
–All the interfaces and

connections
–How much of it do you

trust?

Copyright© 2012 KRvW Associates, LLC

How about Android?

Several issues
–WebKit based browser and

web apps
–WebView in other apps
–SQLite interface
–Web services interfaces to

servers
Just to name a few

48

Copyright© 2012 KRvW Associates, LLC

Access control

Largely a server side
issue, but can be
exacerbated by poor input
validation

49

Copyright© 2012 KRvW Associates, LLC

How bad is it?

50

This one is murkier to say
without extensive testing
–But in my experience testing

apps, access control was
always lacking

51

M7- Security Decisions Via Untrusted Inputs

• Can be leveraged to bypass
permissions and security models

• Similar but different depending on
platform

• iOS- Abusing URL Schemes

• Android- Abusing Intents

• Several attack vectors

• Malicious apps

• Client side injection

Impact

• Consuming
paid resources

• Data
exfiltration

• Privilege
escalation

52

M7- Security Decisions Via Untrusted Inputs

Skype iOS URL Scheme Handling Issue

• http://software-security.sans.org/blog/2010/11/08/insecure-handling-url-schemes-apples-ios/

53

M7- Security Decisions Via Untrusted Inputs
Prevention Tips

• Check caller’s permissions at
input boundaries

• Prompt the user for additional
authorization before allowing

• Where permission checks
cannot be performed, ensure
additional steps required to
launch sensitive actions

Control
#

Description

10.2 Run interpreters at minimal
privilege levels

54

M8- Side Channel Data Leakage

• Mix of not disabling platform features and
programmatic flaws

• Sensitive data ends up in unintended places

• Web caches

• Keystroke logging

• Screenshots (ie- iOS backgrounding)

• Logs (system, crash)

• Temp directories

• Understand what 3rd party libraries in your
apps are doing with user data
(ie- ad networks, analytics)

Impact

• Data retained
indefinitely

• Privacy
violations

55

M8- Side Channel Data Leakage

Logging

Screenshots

56

M8- Side Channel Data Leakage
Prevention Tips

• Never log credentials, PII, or other sensitive data to
system logs

• Remove sensitive data before screenshots are taken,
disable keystroke logging per field, and utilize anti-
caching directives for web content

• Debug your apps before releasing them to observe
files created, written to, or modified in any way

• Carefully review any third party libraries you
introduce and the data they consume

• Test your applications across as many platform
versions as possible

Control
#

Description

7.3 Check whether you are
collecting PII, it may not
always be obvious

7.4 Audit communication
mechanisms to check for
unintended leaks (e.g. image
metadata)

57

M10- Sensitive Information Disclosure

• We differentiate by stored (M1) vs.
embedded/hardcoded (M10)

• Apps can be reverse engineered
with relative ease

• Code obfuscation raises the bar, but
doesn’t eliminate the risk

• Commonly found “treasures”:

• API keys

• Passwords

• Sensitive business logic

Impact

• Credentials
disclosed

• Intellectual
property
exposed

58

M10- Sensitive Information Disclosure

59

M10- Sensitive Information Disclosure
Prevention Tips

• Private API keys are called that
for a reason…keep them off of
the client

• Keep proprietary and sensitive
business logic on the server

• Almost never a legitimate reason
to hardcode a password (if there
is, you have other problems)

Control
#

Description

2.10 Do not store any passwords
or secrets in the application
binary

Copyright© 2012 KRvW Associates, LLC

Platform Architecture - Android
What the Android / hardware
platform offers us in the way of
protection

Copyright© 2012 KRvW Associates, LLC

Android application architecture

The Android platform is a
Java-based stack with a
modified linux kernel
–Apps can reach down as

they choose to
–Only published APIs are

permitted, however

See http://developer.android.com/guide/
basics/what-is-android.html

61

Copyright© 2012 KRvW Associates, LLC

Android fundamentals

App components
– Activities

l Single screen and user interface
l Activated by an intent

– Services
l Background task with no user interface
l Activated by an intent

– Content providers
l Manages shared set of app data
l Activated when targeted by a content

resolver
– Broadcast receivers

l Listens for system-wide broadcast
announcements

l Activated by an intent

62

Copyright© 2012 KRvW Associates, LLC

For all intents and purposes

Intents
– Handy little objects

(android.content.Intent)
– Explicit and implicit
– Messaging between apps

lEssentially an API for one app
to invoke another via messaging

– The key to building a mesh
of cooperating apps

– How does that affect
isolation?

63

Copyright© 2012 KRvW Associates, LLC

App manifest

Defines an app’s
components and
permissions
–AndroidManifest.xml
–Approved (or not) in a

single yes/no from user
–No line item veto by user
–Permissions include

lSMS
lPhone call
lFile i/o

Example
<?xml version="1.0" encoding="utf-8"?>
<manifest ... >
 <application android:icon="@drawable/
app_icon.png" ... >
 <activity
android:name="com.example.project.ExampleActivity"
 android:label="@string/
example_label" ... >
 </activity>
 ...
 </application>
</manifest>

64

Copyright© 2012 KRvW Associates, LLC

Manifest permissions

Declare what
permissions an app
needs
–Examples include

android.permission.CALL_EMERGENCY_NUMBERS
android.permission.READ_OWNER_DATA
android.permission.SET_WALLPAPER
android.permission.DEVICE_POWER

–Granular to specific
activity
<manifest . . . >

 <permission
android:name="com.example.project.DEBIT_ACCT".../>

 <uses-permission
android:name="com.example.project.DEBIT_ACCT" />

 . . .

<application . . .>

 <activity
android:name="com.example.project.FreneticActivity"

android:permission="com.example.project.DEBIT_ACCT"
 . . . >
 . . .
 </activity>
 </application>

</manifest>

65

Copyright© 2012 KRvW Associates, LLC

Manifest issues

Interesting aspect of an
app’s sandbox
Permissions can be
defined quite rigorously
App code is obligated to
comply
But it’s all up to the
developer to get it right
User has no insight or
configurability

66

Copyright© 2012 KRvW Associates, LLC

Key security features

Application sandboxing
–No app can perform any

action harmful to other apps
or the OS

Application Signing
File IDs and Permissions
SSL

67

Copyright© 2012 KRvW Associates, LLC

Application sandboxing

By default, apps are only
permitted to access
resources in their sandbox
– Each app gets a unique UNIX-

style UID
– File permissions keep files

private per app at file system
– Inter-app comms are by

established APIs only
l URLs
l File IO

Sounds pretty good, eh?
68

Copyright© 2012 KRvW Associates, LLC

Encryption on Android
Android 2.2 has software
based encryption
– Standard Java classes
– Bouncy Castle works too
Android 3.0 and 4.0
include hardware based
encryption
– But our apps can’t rely on this

See http://www.unwesen.de/2011/06/12/
encryption-on-android-bouncycastle/

69

Copyright© 2012 KRvW Associates, LLC

SSL and x.509 certificate handling

API provided for SSL and
certificate verification
– javax.crypto.*
– Basic client to server SSL is

pretty easy
lSelf-signed certs are frustrating

– Mutual verification of
certificates is achievable, but
API is complex

Overall, pretty solid
– Whew!

70

Copyright© 2012 KRvW Associates, LLC

And a few glitches...

No ubiquitous hardware
encryption
Legacy phones not receiving
OS updates
– What is “Android” really?
No centralized app store
– apps are not reviewed

consistently before introduction
into one of the many app stores

– Trojan Android apps have been
spotted many times

71

Copyright© 2012 KRvW Associates, LLC

Discouraged?

If we build our apps using
these protections only,
we’ll have problems
– But consider risk
– What is your app’s “so

what?” factor?
– What data are you

protecting?
– From whom?
– Might be enough for some

purposes
72

Copyright© 2012 KRvW Associates, LLC

But for a serious enterprise...

The protections provided
are simply not adequate to
protect serious data
–Financial
–Privacy
–Credit cards
We need to further lock
down
–But how much is enough?

73

Copyright© 2012 KRvW Associates, LLC

Application Architecture
How do we build our apps securely?

Copyright© 2012 KRvW Associates, LLC

Common app types

Web app
Web-client hybrid
App
–Stand alone
–Client-server
–Networked
Decision time...

75

Copyright© 2012 KRvW Associates, LLC

Web applications

Don’t laugh--you really
can do a lot with them
–Dashcode is pretty slick

lAnd mostly works on Android
–Can give a very solid UI to

a web app
Pros and cons
–Data on server (mostly)
–No app store to go through
–Requires connectivity

76

Copyright© 2012 KRvW Associates, LLC

Web-client hybrid

Local app with web views
–Still use Dashcode on web

views
–Local resources available

via Javascript
lLocation services, etc

Best of both worlds?
–Powerful, dynamic
–Still requires connection

77

Copyright© 2012 KRvW Associates, LLC

Android app -- client-server

Most common app for
enterprises
– Basically alternate web client

for many
– But with Android UI on

client side
– Server manages access,

sessions, etc.
Watch out for local storage
– Avoid if possible
– Encrypt if not

78

Copyright© 2012 KRvW Associates, LLC

Android app -- networked

Other network
architectures also
–Internet-only
–P2P apps
Not common for
enterprise purposes

79

Copyright© 2012 KRvW Associates, LLC

Common Security Mechanisms
Now let’s build security in

Copyright© 2012 KRvW Associates, LLC

Common mechanisms

Input validation
Output escaping
Authentication
Session handling
Protecting secrets
–At rest
– In transit
SQL connections

81

Copyright© 2012 KRvW Associates, LLC

Input validation

Positive vs negative
validation
–Dangerous until proven safe
–Don’t just block the bad
Consider the failures of
desktop anti-virus tools
–Signatures of known viruses

82

Copyright© 2012 KRvW Associates, LLC

Input validation architecture

We have several choices
–Some good, some bad
Positive validation is our
aim
Consider tiers of security
in an enterprise app
–Tier 1: block the bad
–Tier 2: block and log
–Tier 3: block, log, and take

evasive action to protect
83

Copyright© 2012 KRvW Associates, LLC

Input validation
private void validateDataFormat(String t){

 Pattern p = Pattern.compile("^REGEX GOES HERE!$");
 Matcher m = p.matcher(t);
 m.find();
 if (m.matches()){
 this.myString = m.group(0);
 this.setIsValid(true);
 this.setStatus(0);
 } else {
 this.myString = "Invalid Input String";
 this.setIsValid(false);
 this.setStatus(99); // String parsing error
 }
}

84

Copyright© 2012 KRvW Associates, LLC

Output escaping

Principle is to ensure data
output does no harm in
output context
–Output escaping of control

chars
lHow do you drop a “<“ into an

XML file?

–Consider all the possible
output contexts

85

Copyright© 2012 KRvW Associates, LLC

Output encoding details

Intent is to take dangerous
data and output
harmlessly
–Context matters greatly
–Especially want to block

Javascript (XSS)
In Android, not as much
control, but
–Never point WebView to

untrusted content

86

Copyright© 2012 KRvW Associates, LLC

Output encoding (server side)

Context
<body> UNTRUSTED DATA HERE </body>
<div> UNTRUSTED DATA HERE </div>
 other normal HTML elements

String safe =
ESAPI.encoder().encodeForHTML(request.getParameter(“input”));

87

Copyright© 2012 KRvW Associates, LLC

Simple output encoding (client)

Basic output encoders are available too
String	
 requestURL	
 =	

	
 	
 	
 String.format("http://www.example.com/?a=%s&b=%s",
	
 	
 	
 	
 	
 	
 Uri.encode("foo	
 bar"),	

	
 	
 	
 	
 	
 	
 Uri.encode("100%	
 fubar'd"));

Or

import	
 static	
 org.apache.commons.lang.StringEscapeUtils.escapeHtml;
	
 	
 	
 String	
 source	
 =	
 "The	
 sign	
 (<)	
 and	
 ampersand	
 (&)	
 must	
 be	
 escaped";
	
 	
 	
 String	
 escaped	
 =	
 escapeHtml(source);

These simplistic encoders are not substitutes for
robust encoding on the server, however

88

Copyright© 2012 KRvW Associates, LLC

Authentication

This next example is for
authenticating an app user
to a server securely
–Server takes POST request,

just like a web app

89

Copyright© 2012 KRvW Associates, LLC

Authentication (POST-style)
DefaultHttpClient	
 client	
 =	
 new	
 DefaultHttpClient();

HttpPost	
 httppost	
 =	
 new	
 HttpPost(LOGIN_SERVLET_URI);
List<BasicNameValuePair>	
 params	
 =	
 new	

	
 	
 	
 	
 	
 	
 ArrayList<BasicNameValuePair>();
params.add(new	
 BasicNameValuePair("userName",	
 userName));
params.add(new	
 BasicNameValuePair("password",	
 password));

UrlEncodedFormEntity	
 p_entity	
 =	

	
 	
 	
 	
 new	
 UrlEncodedFormEntity(params,	
 HTTP.UTF_8);
httppost.setEntity(p_entity);
HttpResponse	
 response	
 =	
 client.execute(httppost);
HttpEntity	
 responseEntity	
 =	
 response.getEntity();

90

Copyright© 2012 KRvW Associates, LLC

Authentication (JSON POST-style)
public static String getGoogleAuthKey(String _USERNAME,

 String _PASSWORD) throws UnsupportedEncodingException, IOException {
 Document doc = Jsoup.connect(_GOOGLE_LOGIN_URL).data(
 "accountType", "GOOGLE",
 "Email", _USERNAME,
 "Passwd", _PASSWORD,
 "service", "reader",
 "source", "<your app name>")
 .userAgent("<your app name>")
 .timeout(4000)
 .post();

// RETRIEVES THE RESPONSE TEXT inc SID and AUTH. We only want the AUTH key.

String _AUTHKEY =
doc.body().text().substring(doc.body().text().indexOf("Auth="),
doc.body().text().length());
_AUTHKEY = _AUTHKEY.replace("Auth=","");
return _AUTHKEY;

}

91

Copyright© 2012 KRvW Associates, LLC

Mutual authentication

We may also want to use
x.509 certificates and
SSL to do strong mutual
authentication
More complicated, but
stronger

Example is long--see src at: http://stackoverflow.com/
questions/4064810/using-client-server-certificates-for-two-
way-authentication-ssl-socket-on-androi

92

Copyright© 2012 KRvW Associates, LLC

Session handling

Normally controlled on
the server for client-server
apps
Basic session rules apply
–Server generates session

token, once authenticated
–Session token identifies

user/session until
invalidated

Testing does help, though

93

Copyright© 2012 KRvW Associates, LLC

Testing

Pitfalls to test for
–Credentials encrypted in

transit?
–Using mobile device ID

for auth or session
–GET vs. POST
–Username enumeration

or harvesting?
–Dictionary and brute

force attacks

–Bypassing
–Password remember and

reset
–Password geometry
–Logout and browser

caching
Dynamic validation is
very helpful

94

Copyright© 2012 KRvW Associates, LLC

Examples – HTTP 1
POST http://www.example.com/AuthenticationServlet HTTP/1.1
Host: www.example.com
User-Agent: Mozilla/5.0 (Windows; U; Windows NT 5.1; it; rv:1.8.1.14) Gecko/20100404
Accept: text/xml,application/xml,application/xhtml+xml
Accept-Language: it-it,it;q=0.8,en-us;q=0.5,en;q=0.3
Accept-Encoding: gzip,deflate
Accept-Charset: ISO-8859-1,utf-8;q=0.7,*;q=0.7
Keep-Alive: 300
Connection: keep-alive
Referer: http://www.example.com/index.jsp
Cookie:
JSESSIONID=LVrRRQQXgwyWpW7QMnS49vtW1yBdqn98CGlkP4jTvVCGdyPkmn3S
!
Content-Type: application/x-www-form-urlencoded
Content-length: 64

delegated_service=218&User=test&Pass=test&Submit=SUBMIT
95

Copyright© 2012 KRvW Associates, LLC

Examples – HTTP 2
POST https://www.example.com:443/login.do HTTP/1.1
Host: www.example.com
User-Agent: Mozilla/5.0 (Windows; U; Windows NT 5.1; it; rv:1.8.1.14) Gecko/
20100404
Accept: text/xml,application/xml,application/xhtml+xml,text/html
Accept-Language: it-it,it;q=0.8,en-us;q=0.5,en;q=0.3
Accept-Encoding: gzip,deflate
Accept-Charset: ISO-8859-1,utf-8;q=0.7,*;q=0.7
Keep-Alive: 300
Connection: keep-alive
Referer: https://www.example.com/home.do
Cookie: language=English;
Content-Type: application/x-www-form-urlencoded
Content-length: 50

Command=Login&User=test&Pass=test

96

Copyright© 2012 KRvW Associates, LLC

Examples – HTTP 3
POST https://www.example.com:443/login.do HTTP/1.1
Host: www.example.com
User-Agent: Mozilla/5.0 (Windows; U; Windows NT 5.1; it; rv:1.8.1.14) Gecko/20100404
Accept: text/xml,application/xml,application/xhtml+xml,text/html
Accept-Language: it-it,it;q=0.8,en-us;q=0.5,en;q=0.3
Accept-Encoding: gzip,deflate
Accept-Charset: ISO-8859-1,utf-8;q=0.7,*;q=0.7
Keep-Alive: 300
Connection: keep-alive
Referer: http://www.example.com/homepage.do
Cookie:
SERVTIMSESSIONID=s2JyLkvDJ9ZhX3yr5BJ3DFLkdphH0QNSJ3VQB6pLhjkW6F
Content-Type: application/x-www-form-urlencoded
Content-length: 45

User=test&Pass=test&portal=ExamplePortal

97

Copyright© 2012 KRvW Associates, LLC

Examples – HTTP 4

GET https://www.example.com/success.html?user=test&pass=test HTTP/
1.1
Host: www.example.com
User-Agent: Mozilla/5.0 (Windows; U; Windows NT 5.1; it; rv:1.8.1.14)
Gecko/20100404
Accept: text/xml,application/xml,application/xhtml+xml,text/html
Accept-Language: it-it,it;q=0.8,en-us;q=0.5,en;q=0.3
Accept-Encoding: gzip,deflate
Accept-Charset: ISO-8859-1,utf-8;q=0.7,*;q=0.7
Keep-Alive: 300
Connection: keep-alive
Referer: https://www.example.com/form.html
If-Modified-Since: Mon, 30 Jun 2010 07:55:11 GMT
If-None-Match: "43a01-5b-4868915f"

98

Copyright© 2012 KRvW Associates, LLC

Access control (authorization)

On the Android device
itself, apps have access to
everything in their
sandbox
Server side must be
designed and built in like
any web app

99

Copyright© 2012 KRvW Associates, LLC

Authorization basics

Question every action
–Is the user allowed to

access this
lFile
lFunction
lData
lEtc.

By role or by user
–Complexity issues
–Maintainability issues
–Creeping exceptions

100

Copyright© 2012 KRvW Associates, LLC

Role-based access control

Must be planned
carefully
Clear definitions of
–Users
–Objects
–Functions
–Roles
–Privileges

Plan for growth
Even when done well,
exceptions will happen

101

Copyright© 2012 KRvW Associates, LLC

ESAPI access control
In the presentation layer:

<% if (ESAPI.accessController().isAuthorizedForFunction(ADMIN_FUNCTION)) { %>
 ADMIN
 <% } else { %>
 NORMAL
 <% } %>

In the business logic layer:

try {
 ESAPI.accessController().assertAuthorizedForFunction(BUSINESS_FUNCTION);
 // execute BUSINESS_FUNCTION
 } catch (AccessControlException ace) {
 ... attack in progress
 }

102

Copyright© 2012 KRvW Associates, LLC

Protecting secrets at rest

The biggest problem by
far is key management
–How do you generate a

strong key?
–Where do you store the key?
–What happens if the user

loses his key?
Too strong and user
support may be an issue

103

Copyright© 2012 KRvW Associates, LLC

Built-in file permissions (weak)

Uses Java 2 standard file
permissions at OS level
–Weak, but still a good idea
Things to avoid
– MODE_WORLD_READABLE
– MODE_WORLD_WRITABLE

104

Copyright© 2012 KRvW Associates, LLC

Protecting secrets at rest
(keychain)

Recently released in 4.0
(API 14)
–Jury is still out on this one

105

Copyright© 2012 KRvW Associates, LLC

Enter SQLcipher

Open source extension to
SQLite
– Free
– Uses OpenSSL to AES-256

encrypt database
– Uses PBKDF2 for key expansion
– Generally accepted crypto

standards
Available from
– http://sqlcipher.net
– https://guardianproject.info/code/

sqlcipher/ -- Android port
106

Copyright© 2012 KRvW Associates, LLC

Protecting secrets at rest
(SQLcipher)

Start with
 import info.guardianproject.database.sqlcipher.SQLiteDatabase;
 import info.guardianproject.database.sqlcipher.SQLiteOpenHelper;

Then use
 	 mDb.execSQL("PRAGMA rekey = '" + password + "'");

All the rest is standard SQLite!

Toughest problem is still key management
107

Copyright© 2012 KRvW Associates, LLC

SQLcipher example

See notepadbot (aka
“notecipher”)
–Android example notepad
–SQLcipher enabled
Available from
–https://github.com/

guardianproject/notepadbot

108

Copyright© 2012 KRvW Associates, LLC

Protecting secrets in transit

Key management still
matters, but SSL largely
takes care of that
–Basic SSL is pretty straight

forward
lJSSE standards mostly apply

–Mutual certificates are
stronger, but far more
complicated

109

Copyright© 2012 KRvW Associates, LLC

Protecting secrets in transit

Basic HTTPS example

final	
 HttpPost	
 httppost	
 =	
 new	
 HttpPost("https://www.myurl.com");
final	
 List<NameValuePair>	
 postlist	
 =	
 Utils.HttpGetToHttpPost(Arguments);
httppost.setEntity(new	
 UrlEncodedFormEntity(postlist));
final	
 HttpResponse	
 response	
 =	
 httpclient.execute(httppost);

110

Copyright© 2012 KRvW Associates, LLC

Turning on strict name validation

Basic HTTPS example

SSLSocketFactory	
 sf	
 =	
 new	
 SSLSocketFactory(SSLContext.getInstance("TLS"));
sf.setHostnameVerifier(SSLSocketFactory.STRICT_HOSTNAME_VERIFIER);

111

Copyright© 2012 KRvW Associates, LLC

SSL pitfalls to avoid

Several common mistakes
–Disabling certificate

verification
lDon’t laugh, people do it
lTest environments, etc.

–Using self-signed certs
–Storing certs unsafely

lSecret should be secret

112

Copyright© 2012 KRvW Associates, LLC

SSL tutorials

Several on-line tutorials describe SSL pitfalls and
workarounds
–http://www.virtualzone.de/2011-02-27/how-to-use-

apache-httpclient-with-httpsssl-on-android/
–http://thinkandroid.wordpress.com/2009/12/31/creating-

an-http-client-example/
–http://blog.synyx.de/2010/06/android-and-self-signed-ssl-

certificates/

113

Copyright© 2012 KRvW Associates, LLC

SQL connections

Biggest security problem
is using a mutable API
–Dynamic string constructed

queries are weak to SQL
injection

Must use immutable API
–Such as PreparedStatement

114

Copyright© 2012 KRvW Associates, LLC

SQL connections

Prepared statements

 String update = "update zoo set family = ? where name = ?;";
 prst = conn.prepareStatement(update);
 prst.setString(1, "canine");
 prst.setString(2, "basset hound");
 prst.executeUpdate();

115

Copyright© 2012 KRvW Associates, LLC

Getting Started
Putting theory into practice

Copyright© 2012 KRvW Associates, LLC

Where to begin?

You’re armed with good
knowledge
–Perhaps too much?
How do you build with
confidence?

117

Copyright© 2012 KRvW Associates, LLC

Dive deeper

We’re off to a good start,
but you should take deep
dive
– Build reference library

lTechnology docs
lVulnerability and attack

descriptions

– Testing tools
– On-line sources

l iTunes University
– Stanford courseware
– Apple courseware

118

Copyright© 2012 KRvW Associates, LLC

Include the key stakeholders

Plenty of people/orgs
have a vested interest in
your success
–Business owner (or rep)
– Information security
–Privacy officer

119

Copyright© 2012 KRvW Associates, LLC

Process practice

Spend some time
practicing what we’ve
done
–Threat modeling
–Code reviews
–Testing
Small steps and practice
help tremendously
–Small scale projects first

120

Copyright© 2012 KRvW Associates, LLC

Design decisions matter

Threat modeling is easily
omitted
–Time spent here is time well

spent
–Results help build overall

understanding
–Feed code review process
–Feed test process

121

Copyright© 2012 KRvW Associates, LLC

Technology watch

Keep an eye on relevant
developments
–Vulnerabilities
–Security tools
Participate in community
–Conferences
–Forums
–Associations

lOWASP
lFIRST

122

Copyright© 2012 KRvW Associates, LLC

Kenneth R. van Wyk
KRvW Associates, LLC

Ken@KRvW.com
http://www.KRvW.com

