
1 Page

© 2012 WhiteHat Security, Inc.

1

Ghosts of XSS Past, Present

and Future

Jim Manico
VP of Security Architecture

Jim.Manico@whitehatsec.com

January 20, 2012

mailto:sales@whitehatsec.com

2 Page

© 2012 WhiteHat Security, Inc.

2

Jim Manico

• VP Security Architecture, WhiteHat Security

• 15 years of web-based, database-driven software
development and analysis experience

• Over 7 years as a provider of secure developer training
courses for SANS, Aspect Security and others

• OWASP Connections Committee Chair

- OWASP Podcast Series Producer/Host

- OWASP Cheat-Sheet Series Manager

3 Page

© 2012 WhiteHat Security, Inc.

3

XSS: Why so Serious?

• Session hijacking

• Site defacement

• Network scanning

• Undermining CSRF defenses

• Site redirection/phishing

• Load of remotely hosted scripts

• Data theft

• Keystroke logging

• Getting “Scrooged”

4 Page

© 2012 WhiteHat Security, Inc.

4

Past XSS Defensive Strategies

• 1990’s style XSS prevention

• Eliminate <, >, &, ", ' characters?

• Eliminate all special characters?

• Disallow user input?

• Global filter?

5 Page

© 2012 WhiteHat Security, Inc.

5

Past XSS Defensive Strategies

• 1990’s style XSS prevention

• Eliminate <, >, &, ", ' characters?

• Eliminate all special characters?

• Disallow user input?

• Global filter?

WHY WON’T
THIS WORK?

6 Page

© 2012 WhiteHat Security, Inc.

6

XSS Defense, 1990’s

Data Type Defense

Any Data Input Validation

#absolute-total-fail

7 Page

© 2012 WhiteHat Security, Inc.

7

Past XSS Defensive Strategies

• Y2K style XSS prevention

• HTML Entity Encoding

• Replace characters with their 'HTML Entity’ equivalent

• Example: replace the "<" character with "<"

8 Page

© 2012 WhiteHat Security, Inc.

8

WHY WON’T
THIS WORK?

Past XSS Defensive Strategies

• Y2K style XSS prevention

• HTML Entity Encoding

• Replace characters with their 'HTML Entity’ equivalent

• Example: replace the "<" character with "<"

9 Page

© 2012 WhiteHat Security, Inc.

9

XSS Defense, 2000

Data Type Defense

Any Data HTML Entity Encoding

10 Page

© 2012 WhiteHat Security, Inc.

10

XSS Defense, 2000

Data Type Defense

Any Data HTML Entity Encoding

11 Page

© 2012 WhiteHat Security, Inc.

11

Danger: Multiple Contexts

HTML
Body

HTML
Attributes

<STYLE>
Context

<SCRIPT>
Context

URL
Context

Browsers have multiple contexts that must be considered!

12 Page

© 2012 WhiteHat Security, Inc.

12

Past XSS Defensive Strategies

1. All untrusted data must first be canonicalized

- Reduced to simplest form

2. All untrusted data must be validated

- Positive Regular Expressions

- Blacklist Validation

3. All untrusted data must be contextually encoded

- HTML Body

- Quoted HTML Attribute

- Unquoted HTML Attribute

- Untrusted URL

- Untrusted GET parameter

- CSS style value

- JavaScript variable assignment

13 Page

© 2012 WhiteHat Security, Inc.

13

XSS Defense, 2007

Context Defense

HTML Body HTML Entity Encoding

HTML Attribute HTML Attribute Encoding

JavaScript variable assignment

JavaScript function parameter

JavaScript Hex Encoding

CSS Value CSS Hex Encoding

GET Parameter URL Encoding

Untrusted URL HTML Attribute Encoding

Untrusted HTML HTML Validation (Jsoup,

AntiSamy)

14 Page

© 2012 WhiteHat Security, Inc.

14

BAD
 NEWS

I Got Some

15 Page

© 2012 WhiteHat Security, Inc.

15

CSS Pwnage Test Case

• <div style="width: <%=temp3%>;"> Mouse over </div>

• temp3 =
ESAPI.encoder().encodeForCSS("expression(alert(String.fro
mCharCode (88,88,88)))");

• <div style="width: expression\28 alert\28 String\2e
fromCharCode\20 \28 88\2c 88\2c 88\29 \29 \29 ;"> Mouse
over </div>

• Pops in at least IE6 and IE7.

• lists.owasp.org/pipermail/owasp-esapi/2009-
February/000405.html

16 Page

© 2012 WhiteHat Security, Inc.

16

Simplified DOM Based XSS Defense

• 1. Initial loaded page should only be static content.

• 2. Load JSON data via AJAX.

• 3. Only use the following methods to populate the DOM

- Node.textContent

- document.createTextNode

- Element.setAttribute

References: http://www.educatedguesswork.org/2011/08/

guest_post_adam_barth_on_three.html and Abe Kang

17 Page

© 2012 WhiteHat Security, Inc.

17

Dom XSS Oversimplification Danger

• Element.setAttribute is one of the most dangerous
JS methods

• If the first element to setAttribute is any of the
JavaScript event handlers or a URL context based
attribute ("src", "href", "backgroundImage",
"backgound", etc.) then pop.

References: http://www.educatedguesswork.org/2011/08/

guest_post_adam_barth_on_three.html and Abe Kang

18 Page

© 2012 WhiteHat Security, Inc.

18

Best Practice: DOM Based XSS Defense I

• Untrusted data should only be treated as displayable text

• JavaScript encode and delimit untrusted data as quoted strings

• Use document.createElement("…"),
element.setAttribute("…","value"), element.appendChild(…), etc. to
build dynamic interfaces

• Avoid use of HTML rendering methods

• Understand the dataflow of untrusted data through your JavaScript
code. If you do have to use the methods above remember to HTML
and then JavaScript encode the untrusted data

• Make sure that any untrusted data passed to eval() methods is
delimited with string delimiters and enclosed within a closure or
JavaScript encoded to N-levels based on usage and wrapped in a
custom function

19 Page

© 2012 WhiteHat Security, Inc.

19

Best Practice: DOM Based XSS Defense II

• Limit the usage of dynamic untrusted data to right side
operations. And be aware of data which may be passed to
the application which look like code (eg. location, eval()).

• When URL encoding in DOM be aware of character set
issues as the character set in JavaScript DOM is not clearly
defined

• Limit access to properties objects when using object[x]
access functions

• Don’t eval() JSON to convert it to native JavaScript objects.
Instead use JSON.toJSON() and JSON.parse()

• Run untrusted script in a sandbox (ECMAScript canopy,
HTML 5 frame sandbox, etc)

20 Page

© 2012 WhiteHat Security, Inc.

20

JavaScript Sandboxing

• Capabilities JavaScript (CAJA) from Google

- Applies an advanced security concept, capabilities, to define a
version of JavaScript that can be safer than the sandbox

• JSReg by Gareth Heyes

- JavaScript sandbox which converts code using regular expressions

- The goal is to produce safe Javascript from a untrusted source

• ECMAScript 5

- Object.seal(obj)
Object.isSealed(obj)

- Sealing an object prevents other code from deleting, or changing the
descriptors of, any of the object's properties

21 Page

© 2012 WhiteHat Security, Inc.

21

JSReg: Protecting JS with JS

• JavaScript re-writing

- Parses untrusted HTML and returns trusted HTML

- Utilizes the browser JS engine and regular expressions

- No third-party code

• First layer is an iframe used as a safe throw away box

• The entire JavaScript objects/properties list was
whitelisted by forcing all methods to use suffix/prefix of "$"

• Each variable assignment was then localized using var to
force local variables

• Each object was also checked to ensure it didn’t contain a
window reference

22 Page

© 2012 WhiteHat Security, Inc.

22

XSS Defense, Today

23 Page

© 2012 WhiteHat Security, Inc.

23

XSS Defense, Today
Data Type Context Defense

Numeric, Type safe

language

Doesn’t Matter Cast to Numeric

String HTML Body HTML Entity Encode

String HTML Attribute,

quoted

Minimal Attribute Encoding

String HTML Attribute,

unquoted

Maximum Attribute Encoding

String GET Parameter URL Encoding

String Untrusted URL URL Validation, avoid

javascript: URL’s, Attribute

encoding, safe URL

verification

String CSS Strict structural validation,

CSS Hex encoding, good

design

HTML HTML Body HTML Validation (JSoup,

AntiSamy, HTML Sanitizer)

Any DOM DOM XSS Cheat sheet

Untrusted JavaScript Any Sandboxing

JSON Client parse time JSON.parse() or json2.js

24 Page

© 2012 WhiteHat Security, Inc.

24

Google CAJA: Subset of JavaScript

• Caja sanitizes JavaScript into Cajoled JavaScript

• Caja uses multiple sanitization techniques

- Caja uses STATIC ANALYSIS when it can

- Caja modifies JavaScript to include additional run-time checks for
additional defense

25 Page

© 2012 WhiteHat Security, Inc.

25

CAJA workflow

• The web app loads the Caja runtime library which is written
in JavaScript

• All un-trusted scripts must be provided as Caja source code
to be statically verified and cajoled by the Caja sanitizer

• The sanitizer's output is either included directly in the
containing web page or loaded by the Caja runtime engine

26 Page

© 2012 WhiteHat Security, Inc.

26

Caja Compliant JavaScript

• A Caja-compliant JavaScript program is one which

- is statically accepted by the Caja sanitizer

- does not provoke Caja-induced failures when run cajoled

• Such a program should have the same
semantics whether run cajoled or not

27 Page

© 2012 WhiteHat Security, Inc.

27

#@$(This

• Most of Caja’s complexity is needed to defend against
JavaScript's rules regarding the binding of "this”.

• JavaScript's rules for binding "this" depends on whether
a function is invoked

- by construction

- by method call

- by function call

- or by reflection

• If a function written to be called in one way is instead called
in another way, its "this" might be rebound to a different
object or even to the global environment.

28 Page

© 2012 WhiteHat Security, Inc.

28

FUTURE
�

29 Page

© 2012 WhiteHat Security, Inc.

29

Context Aware Auto-Escaping

• Context-Sensitive Auto-Sanitization (CSAS) from Google

- Runs during the compilation stage of the Google Closure Templates
to add proper sanitization and runtime checks to ensure the correct
sanitization.

• Java XML Templates (JXT) from OWASP by Jeff Ichnowski

- Fast and secure XHTML-compliant context-aware auto-encoding
template language that runs on a model similar to JSP.

• Apache Velocity Auto-Escaping by Ivan Ristic

- Fast and secure XHTML-compliant context-aware auto-encoding
template language that runs on a model similar to JSP.

30 Page

© 2012 WhiteHat Security, Inc.

30

Auto Escaping Tradeoffs

• Developers need to write highly compliant templates

- No "free and loose" coding like JSP

- Requires extra time but increases quality

• These technologies often do not support complex contexts

- Some are not context aware (really really bad)

- Some choose to let developers disable auto-escaping on a case-by-
case basis (really bad)

- Some choose to encode wrong (bad)

- Some choose to reject the template (better)

31 Page

© 2012 WhiteHat Security, Inc.

31

Content Security Policy

• Externalize all JavaScript within Web pages

- No inline script tag

- No inline JavaScript for onclick or other handling events

- Push all JavaScript to formal .js files using event binding

• Define the policy for your site and whitelist the allowed
domains where the externalized JavaScript is located

• Add the X-Content-Security-Policy response header to
instruct the browser that CSP is in use

• Will take 3-5 years for wide adoption and support

32 Page

© 2012 WhiteHat Security, Inc.

32

XSS Defense, Future?
Data Type Context Defense

Numeric, Type safe

language

Doesn’t Matter Auto Escaping Templates,

Content Security Policy,

Sandboxing String HTML Body

String HTML Attribute,

quoted

String HTML Attribute,

unquoted

String GET Parameter

String Untrusted URL

String CSS

Untrusted JavaScript Any

HTML HTML Body

Any DOM

Untrusted JavaScript Any

JSON Client parse time JSON.parse()

33 Page

© 2012 WhiteHat Security, Inc.

33

Thank You
Jim Manico

VP of Security Architecture

Jim.Manico@whitehatsec.com

A BIG THANK YOU TO:

Gaz Heyes

Abe Kang

Mike Samuel

Jeff Ichnowski

Adam Barth

Jeff Williams

many many others…

mailto:sales@whitehatsec.com

