
March 2012 XSS Defense v6.2 Eoin Keary and Jim Manico Page 1

XSS Defense Module

Eoin Keary
Jim Manico

March 2012 XSS Defense v6.2 Eoin Keary and Jim Manico Page 2

What is XSS?
 Cross-site Scripting (XSS)

 Attacker driven JavaScript
 Most common web vulnerability
 Easy vulnerability to find via auditing
 Easy vulnerability to exploit
 Certain types of XSS are very complex to fix
 Difficult to fix all XSS for a large app
 Easy to re-introduce XSS in development
 Significant business and technical impact

potential

March 2012 XSS Defense v6.2 Eoin Keary and Jim Manico Page 3

XSS Attack Payload Types
 Session hijacking

 Site defacement potential

 Network scanning

 Undermining CSRF defenses

 Site redirection/phishing

 Data theft

 Keystroke logging

 Loading of remotely hosted scripts

March 2012 XSS Defense v6.2 Eoin Keary and Jim Manico Page 4

Input Example

Consider the following URL :

www.example.com/saveComment?comment=Great+Site!

How can an attacker misuse this?

March 2012 XSS Defense v6.2 Eoin Keary and Jim Manico Page 5

XSS Variants

 Reflected/Transient
 Data provided by a client is immediately used

by server-side scripts to generate a page of
results for that user.

 Search engines

 Stored/Persistent
 Data provided by a client is first stored

persistently on the server (e.g., in a database,
filesystem), and later displayed to users

 Bulletin Boards, Forums, Blog Comments

March 2012 XSS Defense v6.2 Eoin Keary and Jim Manico Page 6

XSS Variants

 DOM based XSS
 A page's client-side script itself accesses a URL

request parameter and uses this information to
dynamically write some HTML to its own page

 DOM XSS is triggered when a victim interacts
with a web page directly without causing the
page to reload.

 Difficult to test with scanners and proxy tools –

why?

March 2012 XSS Defense v6.2 Eoin Keary and Jim Manico Page 7

Web Server
with XSS hole

10.0.0.10

Hacker web
server

10.0.0.20

Victim

1. Hacker
inserts XSS

code into page
on target web

server

2. Victim views page
with inserted XSS

code

3. Inserted XSS code
redirects victim to
hacker web server

4. Cookie stolen
and available for

hacker to use!

Hacker
$$

Reflected XSS

1. Hacker sends
link to victim.
Link contains
XSS payload

2. Victim views page
via XSS link supplied

by attacker.

3. XSS code executes

on victims browser and
sends cookie to evil

server

4. Cookie is stolen. The
Attacker can hijack the

Victims session.

March 2012 XSS Defense v6.2 Eoin Keary and Jim Manico Page 8

//Search.aspx.cs

public partial class _Default : System.Web.UI.Page

{

 Label lblResults;

 protected void Page_Load(object sender, EventArgs e)

 {

 //... doSearch();

 this.lblResults.Text = "You Searched For " +

 Request.QueryString["query"];

 }

OK: http://app.com/Search.aspx?query=soccer

NOT OK: http://app.com/Search.aspx?query=<script>...</script>

Reflected XSS

March 2012 XSS Defense v6.2 Eoin Keary and Jim Manico Page 9

Reflected XSS Demo -
Keylogger

March 2012 XSS Defense v6.2 Eoin Keary and Jim Manico Page 10

4

Persistent/Stored XSS

March 2012 XSS Defense v6.2 Eoin Keary and Jim Manico Page 11

//ViewComments.jsp

<%

int id = Integer.parseInt(Request.getParameter(“id”));

Statement stmt = conn.createStatement();

ResultSet rs =

stmt.executeQuery("select * from forum where id=“ + id);

if (rs != null) {

rs.next();

String name = rs.getString(“comment");

%>

User Comment : <%= comment %>

Persistent/Stored XSS

March 2012 XSS Defense v6.2 Eoin Keary and Jim Manico Page 12

Persistent/Stored XSS –
Demo

March 2012 XSS Defense v6.2 Eoin Keary and Jim Manico Page 13

1

4

DOM-Based XSS

March 2012 XSS Defense v6.2 Eoin Keary and Jim Manico Page 14

<HTML>
 <TITLE>Welcome!</TITLE>
 Hi
 <SCRIPT>
 var pos=document.URL.indexOf("name=")+5;

document.write(document.URL.substring(pos,document.URL.length));

 </SCRIPT>

 Welcome to our system
</HTML>

OK : http://a.com/page.htm?name=Joe
NOT OK: http://a.com/page.htm?name=<script>...</script>

In DOM XSS the attack vector has not rewritten the HTML but
is a parameter value

DOM-Based XSS

March 2012 XSS Defense v6.2 Eoin Keary and Jim Manico Page 15

Test for Cross-Site Scripting
 Make note of all pages that display input

originating from current or other users.
 Test by inserting malicious script or characters

to see if they are ultimately displayed back to
the user

 Examine code to ensure that application data is
HTML encoded before being rendered to users

 Very easy to discover XSS via dynamic testing
 More difficult to discover via code review

March 2012 XSS Defense v6.2 Eoin Keary and Jim Manico Page 16

Test for Cross-Site Scripting
 Remember the three common types of attacks:

 Input parameters that are rendered directly
back to the user

 Server-Side
 Client-Side

 Input that is rendered within other pages
 Hidden fields are commonly vulnerable to this

exploit as there is a perception that hidden fields
are read-only

 Error messages that redisplay user input

March 2012 XSS Defense v6.2 Eoin Keary and Jim Manico Page 17

Test for Cross-Site Scripting
 Each input should be tested to see if data gets

rendered back to the user.
 Break out of another tag by inserting “>

before the malicious script
 Bypass <script> “tag-hunting” filters

<p style="left:expression(eval('alert(document.cookie)'))">

\u003Cscript\u003E

 May not require tags if the input is inserted into
an existing JavaScript routine <- DOM XSS

<SCRIPT> <% = userdata %> </SCRIPT>

March 2012 XSS Defense v6.2 Eoin Keary and Jim Manico Page 18

Danger: XSS Weak Defense Used

 Getting rid of XSS is a difficult task
 How can we prevent XSS in our web

application
 Eliminate <, >, &, ", ' characters?
 Eliminate all special characters?
 Disallow user input? (not possible)
 Global filter?

 Why won't these strategies work?

March 2012 XSS Defense v6.2 Eoin Keary and Jim Manico Page 19

XSS Defense: The Solution?
 Depends on the type of user input

 HTML, Strings, Uploaded Files
 Depends on where user input is displayed in an

HTML document
 HTML Body
 HTML Attribute
 JavaScript Variable Assignment

 Several defensive techniques needed depending
on context
 Input Validation
 Output Encoding
 Sandboxing

March 2012 XSS Defense v6.2 Eoin Keary and Jim Manico Page 20

Data Type Context Defense

Numeric, Type safe language Doesn’t Matter Cast to Numeric

String HTML Body HTML Entity Encode

String HTML Attribute, quoted Minimal Attribute Encoding

String HTML Attribute,
unquoted

Maximum Attribute Encoding

String GET Parameter URL Encoding

String Untrusted URL URL Validation, avoid javascript:
URL’s, Attribute encoding, safe
URL verification

String CSS Strict structural validation, CSS
Hex encoding, good design

HTML HTML Body HTML Validation (JSoup,
AntiSamy, HTML Sanitizer)

Any DOM DOM XSS Cheat sheet

Untrusted JavaScript Any Sandboxing

JSON Client parse time JSON.parse() or json2.js

XSS Defense

March 2012 XSS Defense v6.2 Eoin Keary and Jim Manico Page 21

String email = request.getParameter("email");
out.println("Your email address is: " + email);

Best Practice: Validate and Encode
User Input

String email = request.getParameter("email");
String expression =
"^\w+((-\w+)|(\.\w+))*\@[A-Za-z0-9]+((\.|-)[A-Za-z0-9]+)*\.[A-Za-z0-9]+$";

Pattern pattern = Pattern.compile(expression,Pattern.CASE_INSENSITIVE);
Matcher matcher = pattern.matcher(email);
if (macher.maches())
{
 out.println("Your email address is: " + StringEscapeUtils.escapeHtml(email));
}
else
{
 //log & throw a specific validation exception and fail safely
}

March 2012 XSS Defense v6.2 Eoin Keary and Jim Manico Page 22

StringBuffer buff = new StringBuffer();
if (value == null) {
 return null;
}
for(int i=0; i<value.length(); i++) {
 char ch = value.charAt(i);
 if (ch == '&') {
 buff.append("&");
 } else if (ch == '<') {
 buff.append("<");
 } else if (ch == '>') {
 buff.append(">");
 } else if (Character.isWhitespace(ch)) {
 buff.append(ch);
 } else if (Character.isLetterOrDigit(ch)) {
 buff.append(ch);
 } else if (Integer.valueOf(ch).intValue() >= 20 &&
 Integer.valueOf(ch).intValue() <= 126) {
 buff.append("&#" + (int)ch + ";");
 }
}
return buff.toString();

Simple HTML
encoding
method

Output Encoding Code
Sample

March 2012 XSS Defense v6.2 Eoin Keary and Jim Manico Page 23

Danger: Multiple Contexts
 Different encoding and validation techniques

needed for different contexts!

HTML
Body

HTML
Attributes

<STYLE>
Context

<SCRIPT>
Context

URL
Context

March 2012 XSS Defense v6.2 Eoin Keary and Jim Manico Page 24

HTML Input
• Clients side widgets like TinyMCE and CKEditor

• Users can edit content beyond plain text
• Bold, Bullet Points, Color, etc

• These class of widgets submit HTML via request

parameters, simple validation not enough

• Validate user-driven HTML on the server with an HTML
policy engine
• Java OWASP AntiSamy or HTML Sanitizer
• PHP HTML Purifier
• Java JSoup

March 2012 XSS Defense v6.2 Eoin Keary and Jim Manico Page 25

XSS in HTML Body
 Reflective XSS attack example:
example.com/error?error_msg=You cannot access that

file.

 Untrusted data may land in a UI snippet like the
following:

<div><%= request.getParameter(“error_msg”) %></div>

 Sample test attack payload:
example.com/error?

 error_msg=<script>alert(document.cookie)</script>

 HTML Encoding stops XSS in this context!

March 2012 XSS Defense v6.2 Eoin Keary and Jim Manico Page 26

1. & &

2. < <

3. > >

4. " "

5. ' '

6. / /

HTML Entity Encoding: The
Big 6

March 2012 XSS Defense v6.2 Eoin Keary and Jim Manico Page 27

XSS in HTML Attributes

 Where else can XSS go?
<input type="text" name="comments" value="">
 What could an attacker put in here?
<input type="text" name="comments"

value="hello" onmouseover="/*fire attack*/">
 Attackers can add event handlers:

 onMouseOver
 onLoad
 onUnLoad
 etc…

March 2012 XSS Defense v6.2 Eoin Keary and Jim Manico Page 28

HTML Attribute Context

 Aggressive escaping is needed when placing
untrusted data into typical attribute values like
width, name, value, etc.

 This rule is NOT ok for complex attributes likes
href, src, style, or any event handlers like onblur
or onclick.

 Escape all non alpha-num characters with the
&#xHH; format

 This rule is so aggressive because developers
frequently leave attributes unquoted

 <div id=DATA></div>

March 2012 XSS Defense v6.2 Eoin Keary and Jim Manico Page 29

XSS in Source Attribute

 User input often winds up in src attribute
 Tags such as

 <iframe src="">
 Example Request:
http://example.com/viewImage?imagename=mymap.jpg

 Attackers can use javascript:/*attack*/ in src
attributes

March 2012 XSS Defense v6.2 Eoin Keary and Jim Manico Page 30

XSS Scripting in Script Tag

http://example.com/viewPage?name=Jerry

 What attacks would be possible?
 What would a %0d%0a in the name parameter do

in the output?

http://example.com/viewPage?name=Jerry

March 2012 XSS Defense v6.2 Eoin Keary and Jim Manico Page 31

Javascript Context

 Escape all non alpha-num characters with the
\xHH format

<script>var x='DATA';</script>
 You're now protected from XSS at the time data

is assigned
 What happens to x after you assign it?

March 2012 XSS Defense v6.2 Eoin Keary and Jim Manico Page 32

URL Parameter Escaping

 Escape all non alpha-num characters with the
%HH format

<a href=“/search?data=<%=DATA %>”>
 Be careful not to allow untrusted data to drive

entire URL’s or URL fragments
 This encoding only protects you from XSS at the

time of rendering the link
 Treat DATA as untrusted after submitted

March 2012 XSS Defense v6.2 Eoin Keary and Jim Manico Page 33

URL parameter written within style tag

 Applications sometimes take user data and use it
to generate presentation style

 Consider this example:
http://example.com/viewDocument?background=white

XSS in the Style Tag

March 2012 XSS Defense v6.2 Eoin Keary and Jim Manico Page 34

CSS Pwnage Test Case

<div style="width: <%=temp3%>;"> Mouse over </div>

temp3 =
ESAPI.encoder().encodeForCSS("expression(ale
rt(String.fromCharCode (88,88,88)))");

<div style="width: expression\28 alert\28 String\2e
fromCharCode\20 \28 88\2c 88\2c 88\29 \29 \29 ;">
Mouse over </div>

 Pops in at least IE6 and IE7.
lists.owasp.org/pipermail/owasp-esapi/2009-

February/000405.html

March 2012 XSS Defense v6.2 Eoin Keary and Jim Manico Page 35

CSS Context: XSS Defense

 Escape all non alpha-num characters with the \HH
format

 text</style>
 Do not use any escaping shortcuts like \”
 Strong WhiteHat structural validation is also

required
 If possible, design around this “feature”

 Use trusted CSS files that users can choose
from

 Use client-side only CSS modification (font size)

March 2012 XSS Defense v6.2 Eoin Keary and Jim Manico Page 36

Dangerous Contexts

 There are just certain places in HTML
documents where you cannot place untrusted
data
 Danger: <a $DATA>

 There are just certain JavaScript functions that
cannot safely handle untrusted data for input
 Danger: <script>eval($DATA);</script>

March 2012 XSS Defense v6.2 Eoin Keary and Jim Manico Page 37

DOM Based XSS Defense

 DOM Based XSS is a complex risk

 Suppose that x landed in …

<script>setInterval(x);</script>

 For some Javascript functions, even JavaScript
encoded untrusted data will still execute!

March 2012 XSS Defense v6.2 Eoin Keary and Jim Manico Page 38

“Secure” DOM XSS/AJAX Workflow
• Initial loaded page should only be static content

• Load JSON data via AJAX

• Only use the following methods to populate the DOM
• Node.textContent
• document.createTextNode
• Element.setAttribute

• Caution: Element.setAttribute is one of the most dangerous JS
methods

• Caution: If the first element to setAttribute is any of the
JavaScript event handlers or a URL context based attribute
("src", "href", "backgroundImage", "backgound", etc.) then XSS
will pop

March 2012 XSS Defense v6.2 Eoin Keary and Jim Manico Page 39

Best Practice: DOM Based XSS Defense I
• Untrusted data should only be treated as

displayable text

• JavaScript encode and delimit untrusted data as
quoted strings

• Use document.createElement("…"),
element.setAttribute("…","value"),
element.appendChild(…), etc. to build dynamic
interfaces

• Avoid use of HTML rendering methods

• Make sure that any untrusted data passed to eval()
methods is delimited with string delimiters and
enclosed within a closure or JavaScript encoded to
N-levels based on usage and wrapped in a custom
function

March 2012 XSS Defense v6.2 Eoin Keary and Jim Manico Page 40

Best Practice: DOM Based XSS Defense II
• Limit the usage of dynamic untrusted data to right side

operations. And be aware of data which may be passed to
the application which look like code (eg. location, eval()).

• When URL encoding in DOM be aware of character set
issues as the character set in JavaScript DOM is not
clearly defined

• Limit access to properties objects when using object[x]
access functions

• Don’t eval() JSON to convert it to native JavaScript
objects. Instead use JSON.toJSON() and JSON.parse()

• Run untrusted script in a sandbox (ECMAScript canopy,
HTML 5 frame sandbox, etc)

March 2012 XSS Defense v6.2 Eoin Keary and Jim Manico Page 41

Jquery Encoding with
JQencoder

 Contextual encoding is the most effective way to
combat Cross-Site Scripting (XSS) attacks

 jqencoder is a jQuery plugin that allows developers
to do contextual encoding to stop DOM-based XSS

 http://plugins.jquery.com/plugin-tags/security
<script type="text/javascript">

 $.post('http://site.com/service',

{ parameter1: 'value' }, function(data) {

 $('#element').encode('html', cdata);

 });

</script>

March 2012 XSS Defense v6.2 Eoin Keary and Jim Manico Page 42

Jquery Demo

March 2012 XSS Defense v6.2 Eoin Keary and Jim Manico Page 43

Best Practice: Javascript
Sandboxing

 Capabilities JavaScript (CAJA) from Google
 Applies an advanced security

concept, capabilities, to define a version of
JavaScript that can be safer than the sandbox

 JSReg by Gareth Heyes
 Javascript sandbox which converts code using

regular expressions
 The goal is to produce safe Javascript from a

untrusted source

March 2012 XSS Defense v6.2 Eoin Keary and Jim Manico Page 44

Best Practice: Javascript
Sandboxing

 ECMAScript 5
 Object.seal(obj)
 Object.isSealed(obj)

 Sealing an object prevents other code from
deleting, or changing the descriptors of, any of
the object's properties

March 2012 XSS Defense v6.2 Eoin Keary and Jim Manico Page 45

JSReg: Protecting JavaScript
with JavaScript

 JavaScript re-writing
 Parses untrusted HTML and returns trusted

HTML
 Utilizes the browser JS engine and regular

expressions
 No third-party code

 First layer is an iframe used as a safe throw
away box

March 2012 XSS Defense v6.2 Eoin Keary and Jim Manico Page 46

JSReg: Protecting JavaScript
with JavaScript

 The entire JavaScript objects/properties list
was whitelisted by forcing all methods to use
suffix/prefix of "$"

 Each variable assignment was then
localized using var to force local variables

 Each object was also checked to ensure it didn’t
contain a window reference

 Content Security Policy
 JavaScript policy standard

March 2012 XSS Defense v6.2 Eoin Keary and Jim Manico Page 47

Best Practice: Content Security
Policy

 Externalize all JavaScript within web pages
 No inline script tag
 No inline JavaScript for onclick or other

handling events
 Push all JavaScript to formal .js files using

event binding
 Define Content Security Policy

 Developers define which scripts are valid
 Browser will only execute supported scripts
 Inline JavaScript code is ignored

March 2012 XSS Defense v6.2 Eoin Keary and Jim Manico Page 48

OWASP ESAPI for Java

 ESAPI library provides powerful encoding via
ESAPI.encoder():
 String encodeForHTML(String input)
 String encodeForHTMLAttribute(String

input)
 String encodeForJavaScript(String input)
 String encodeForURL(String input)
 String encodeForCSS(String input)
 And more! (LDAP, XML, OS, etc)

March 2012 XSS Defense v6.2 Eoin Keary and Jim Manico Page 49

ESAPI Output Encoding
<style>

 bgcolor: <%=ESAPI.encoder().encodeForCSS(data) %>;

</style>

Hello, <%=ESAPI.encoder().encodeForHTML(data) %>!

<script>

 var uName='<%=ESAPI.encoder().encodeForJavaScript(data) %>';

</script>

<div id='<%=ESAPI.encoder().encodeForHTMLAttribute(data) %>'>

<a href="/mysite.com/editUser.do?userName=<%=
ESAPI.encoder().encodeForURL(data) %>">Please click me!

March 2012 XSS Defense v6.2 Eoin Keary and Jim Manico Page 50

XSS Defense Lab

March 2012 XSS Defense v6.2 Eoin Keary and Jim Manico Page 51

XSS Scripting Summary

 Cross-Site Scripting (XSS)
 Harmful JavaScript artificially introduced into

your web app
 All user input must be validated!
 All user input must be encoded or sanitized

specific to each context before being displayed
back to the browser!

 Plenty of Web 2.0 vectors to consider such as
JSON parsing and DOM XSS

March 2012 XSS Defense v6.2 Eoin Keary and Jim Manico Page 52

XSS Scripting Summary

 Consider automatic protection methodologies

such as
 HTTP Only Cookies
 JavaScript sandboxing
 Content Security Policy
 Context-aware auto-escaping templates
 Object sealing
 HTML5 Frame sandboxing

	XSS Defense Module
	What is XSS?
	XSS Attack Payload Types
	Input Example
	XSS Variants
	XSS Variants
	Slide Number 7
	Slide Number 8
	Slide Number 9
	Slide Number 10
	Slide Number 11
	Slide Number 12
	Slide Number 13
	Slide Number 14
	Slide Number 15
	Slide Number 16
	Slide Number 17
	Slide Number 18
	Slide Number 19
	XSS Defense
	Slide Number 21
	Slide Number 22
	Slide Number 23
	HTML Input
	Slide Number 25
	Slide Number 26
	Slide Number 27
	Slide Number 28
	Slide Number 29
	Slide Number 30
	Slide Number 31
	Slide Number 32
	Slide Number 33
	Slide Number 34
	Slide Number 35
	Slide Number 36
	Slide Number 37
	“Secure” DOM XSS/AJAX Workflow
	Best Practice: DOM Based XSS Defense I
	Best Practice: DOM Based XSS Defense II
	Slide Number 41
	Slide Number 42
	Slide Number 43
	Slide Number 44
	Slide Number 45
	Slide Number 46
	Slide Number 47
	Slide Number 48
	Slide Number 49
	Slide Number 50
	Slide Number 51
	Slide Number 52

