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Overview

• Introduction
– Some key challenges for software security

• Secure compilation to native code
• Secure browsers
• Conclusions
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We expect too much of developers!

• Understanding whether a piece of C code is secure 
requires:
– Understanding of the C language

• Approx complexity: 700 pages of spec
– Understanding the details of the compiler 

• Approx complexity: 3.7 million lines of code
– Understanding the runtime library implementations

• Approx complexity: 1.7 million lines of code
– Understanding the operating system

• Thousands of pages of specs and millions of lines of code
– Understanding the details of the processor and other 

hardware
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And the Web is many times worse!

• It looks deceptively simple from a distance:

• But each of these components is staggeringly complex
• And they interact in unforeseen ways
• Let’s look at each of them in turn
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The Browser
• Displays HTML

– The HTML5 spec is several hundreds of pages
• Executes JavaScript

– The ECMAScript 5.1 spec is several hundreds of pages
• Supports plugins

– Flash alone is as complex as JavaScript
• Supports a wide variety of protocols

– http, https, ftp, file, telnet, mailto, gopher, ldap, …
• Supports a growing set of API’s

– Audio, video, geolocation, client-side storage, messaging, …
• Supports isolation between content from different sources

– i.e. a browser is more or less an operating system
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The Server

• Is typically an intricate distributed system itself:
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Web and Application server :

•Static HTML

•Dynamic content generation: 
JSP, ASP, CGI, PHP, …

•J2EE, .NET, COM+

Back-end:

•SQL based DB

•Mainframe

•Directory server
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HTTP
• Stateless

– But many mechanisms to add state on top
• “Simple” protocol methods, that do arbitrary complex things
• A proliferation of header fields

– That each need their own standard to describe what they do
• Redirects

– Turn a simple request in a distributed computation
• Relies on DNS

– Cfr. DNS-changer virus in the news the past weeks
• And HTTP is only one of the many web-protocols!
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How do we deal with this today?
• Coding guidelines and tooling

– For instance: 89 Rules and 132 Recommendations in 
the CERT C Secure Coding Standard

– Source code analysis tools implement
heuristic checks to detect deviations from these rules

• Ad-hoc countermeasures in compiler / OS
– Stack canaries / ASLR / taint-mode / …

• This can lead to substantial software security 
improvement
– But is not the long-term solution
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Two key challenges

• The programming language is supposed to isolate the 
programmer from details of the platform to which the 
code is compiled
– This fails miserably as far as security is concerned

• The platform is supposed to provide basic security 
guarantees to applications
– What is provided is a complete mismatch for what 

applications need today
• In this talk we will discuss some directions to rectify this 

situation
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Overview

• Introduction
• Secure compilation to native code

– What does it mean for a compiler to be “secure”?
• The principle of “source-based reasoning”

– How can we achieve secure compilation on 
commodity platforms?

• Secure browsers
• Conclusions
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What is “secure” compilation?

• The compiler is the tool that is supposed to 
isolate the programmer from the low-level 
platform.
– It succeeds well with respect to “expected 

functionality” of the code
– It fails with respect to “security properties” of the 

code
• What are today’s compilers missing? What 

would make a compiler “secure”?
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Security depends on the power of 
attacker

• Case 1: The attacker can only provide input to the 
program under attack
– Example: a network service running on a hardened and well-

protected server machine
– For this case, a secure compiler should make sure that 

behavior of programs is well-defined for all possible inputs
• Case 2: The attacker can interact with the program at a 

lower-level
– Example: any client machine (where malware is a realistic 

threat), or situations where the attacker can load code
– For this case, a secure compiler should preserve contextual 

equivalence
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Case 1: high-level attackers

• A programming language is safe if its behavior is 
always well-defined
– E.g. a[i] = (int) x.f()

• Examples:
– Safe languages: Java, C#, Scala, …
– Unsafe languages: C, C++, Pascal, …

• A compiler is safe if any undefined behavior leads to 
immediate termination
– Compilers for safe languages are always safe
– Fully safe compilers for C typically have terrible performance
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Case 1: high-level attackers

• A safe compiler
– Protects its own abstractions (e.g. no stack smashing attack)
– Is inherently portable
– Mitigates the security impact of developer oversights/bugs!

• An unsafe compiler puts the burden of avoiding 
undefined situations on the programmer

• This is exactly why it is easier to write secure software 
in Java than in C

• But C compilers also get closer and closer to being safe
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Case 2: low-level attackers

• In many cases, attackers can do more than just provide 
input, for instance:
– Because they infected the OS with malware, or
– Because the application supports plugins, or
– Because the attacker can perform a code-injection attack 

against native code in the run time, or
– …

• All current (state-of-practice) compilers give up any form 
of protection for this case
– As a consequence, it is impossible for instance to do secure 

web-banking
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Case 2: low-level attackers

• Can we compile “securely” against low-level 
attackers?

• Some recent breakthroughs make this possible!
– A key enabler is the development of security 

architectures to support on-demand isolated code 
execution on commodity hardware

– See for instance the PhD thesis of Bryan Parno, 
winner of the 2010 ACM Doctoral Dissertation Award
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Isolated execution of critical code
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(Picture taken from Parno’s PhD thesis)
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Secure compilation to native code

• To construct a secure compiler:
– We start from a safe source-language
– We develop a native-code security architecture using 

techniques similar to Parno’s Flicker
– We develop a compilation scheme from the source-

language to the native-code security architecture
– We show that for this compilation scheme, low-level 

attackers have no more power than high-level 
attackers.
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Safe source language

SECAPPDEV 2012 19



KATHOLIEKE
UNIVERSITEIT
LEUVEN

Contextual equivalence
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High-level attackers

• It is the responsibility of the programmer of a 
module to protect against high-level attackers
– Such attackers take the form of arbitrary high-level 

code interacting with the object
– This supports the principle of source based 

reasoning for security:
• One can find and understand any vulnerability in the code 

by only looking at and understanding source code

• A good way of thinking about security properties 
of code is in terms of contextual equivalence
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Example: integrity of a field
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Example: an object-invariant
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Summary
• Attackers are represented as test objects

– High level attackers are source code test objects
– Low level attackers are machine code test objects

• Successful attacks against security properties of a module
=
Contextual non-equivalence of the module with another module 
that “checks the property”

• Secure compilation should preserve contextual equivalence:
– If an attack exists at the low level
– Then, a low-level attacker can distinguish the two low-level modules
– Hence, a high-level attacker can distinguish the two high-level modules
– Hence, an attack exists at the high level
– Hence, the attack can be explained at source code level
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The low-level platform

• Standard Intel x86 style platform
– Processor with

• Program Counter
• Registers and a Stack Pointer
• Status (flags) registers

– 32-bit memory space mapping 32-bit addresses to 
32-bit words

• Extended with a program-counter based memory 
access control model
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Sample instructions
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Standard compilation does not
preserve contextual equivalence
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Low-level protection mechanism
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Low-level protection mechanism

• This can be implemented efficiently!
• Two possible implementation strategies:

– Flicker-style (has been implemented by Raoul Strackx)

– In hardware (extend memory access control logic)
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Compilation scheme
• As expected:

– Compile methods and put in code section
– Allocate space for fields in data section
– Generate entry point for each method
– …

• But many tricky details:
– Handling returns of call-backs
– Handling potentially “poisoned” function pointers
– Protecting local variables / return addresses on the call stack

• Pieter Agten implemented a compiler and proved it secure
• Raoul Strackx implemented an efficient runtime platform to 

compile to
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Secure compilation: conclusions

• We can securely compile one module, and 
provide very strong security assurance:
– Against code injection attacks
– Against malware (even kernel-level)

• But this is not a panacea
– Source-level vulnerabilities remain the responsibility 

of the programmer
– We still lack trusted user interface
– It would be good to support multiple modules

• (This actually works already in our prototype)
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Example source-level vulnerability
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Example source-level vulnerability
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Secure compilation: conclusions

• Compilation techniques that preserve contextual 
equivalence address Key Challenge 1
– The programming language is supposed to isolate the programmer from 

details of the platform to which the code is compiled
• It is now OK to reason about security in terms of the source code

• We discussed how to do this for compiling towards the 
x86 platform

• The same idea is being explored for other platforms
– Including so-called “multi-tier” languages for the web platform
– This requires substantial additional machinery

SECAPPDEV 2012 34



KATHOLIEKE
UNIVERSITEIT
LEUVEN

SECAPPDEV 2012 35

Overview

• Introduction
• Secure compilation to native code
• Secure browsers

– The browser is the new OS
– What security architecture should it offer?

• Conclusions
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Introduction

• Let’s look at Key Challenge 2:
– The platform is supposed to provide basic security 

guarantees to applications
• Modern operating systems were built to isolate 

multiple users
– But most PC’s (and definitely mobile devices) are 

single user
– One single process on that OS is by far the most 

exposed and most security-critical component
• And it has (almost) no benefit from OS-provided isolation
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Introduction

• The browser handles content (data and 
executable code) from a variety of stakeholders
– Multiple open tabs
– Mashups within a single tab

• The browser implements isolation by means of 
the Same Origin Policy
– Origin = (protocol, domain, port)
– Ad-hoc restrictions are imposed on interactions 

between content from different origins
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Third-party JavaScript is everywhere

• Advertisements
– Adhese ad network

• Social web
– Facebook Connect
– Google+
– Twitter
– Feedsburner

• Tracking
– Scorecardresearch

• Web Analytics
– Yahoo! Web Analytics
– Google Analytics

• …
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Integration of third-party JavaScript

• Two basic composition techniques
– Script inclusion

• Third-party script run’s in the execution context (i.e. origin) of 
the embedding page

• Script has access to all the sensitive operations in this 
context

– (Sandboxed) iframe integration
• Third-party component runs in a separate security context 

(i.e. the origin of the third-party service provider)
• Isolation between service provider and embedding page is 

realised via the Same-Origin Policy
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Script inclusion vs iframe integration

40

<html>
<body>
…
<script src=“http://3rdparty.com/script.js”>
</script>
…
</body>
</html>

<html>
<body>
…
<iframe src=“http://3rdparty.com/frame.html”>
</iframe>
…
</body>
</html>

3rd party

3rd party
SECAPPDEV 2012
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Example: Google Maps integration

• Scenario:
– User enters name of a location
– GPS lookup via Google Geocoding API
– Marker placed on the map via Gmap API
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Google Maps code example

Script inclusion

Glue code

DOM element (div)
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Summary

• A browser renders a complex mix of data and 
code from many stakeholders

• The Same-Origin-Policy and existing isolation 
techniques for scripts tend to favor insecure 
mixing of scripts

• In addition, script-injection vulnerabilities (XSS) 
may allow attackers to inject malicious scripts in 
the mix
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Security and privacy consequences

• A large-scale empirical study presented at CCS 
2010 shows that this is a real problem
– Several popular sites (including Alexa global-top 100 

sites) use JavaScript to violate user privacy by:
• Stealing cookies
• History sniffing
• Behavior tracking

– Note that these attacks are invisible to the user
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A better browser security architecture

• So what kind of security architecture is required 
from the browser?
– It should protect user data confidentiality and 

integrity
– In the presence of (possibly malicious) code 

handling that data
– And it should be “compatible” with the current web
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Information flow control to the rescue?

• Information flow control studies the enforcement of 
policies such as:
– “Secret data should not leak to public channels”
– “Low integrity data should not influence high-integrity data”

• A base-line policy (usually too strict – needs further 
relaxing) is non-interference:
– Classify the inputs and outputs of a program into high-

security and low-security
– The low-outputs should not “depend on” the high inputs
– More precisely: there should not exist two executions with the 

same low inputs but different high outputs
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Illustration: non-interference
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P

1 7

7 3

Secure: 
Out_low := In_low + 6

Insecure: 
Out_low := In_high

Insecure: 
if (In_high > 10) {

Out_low := 3;
}
else Out_low := 7
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Example: information flow control in 
Javascript
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var text = document.getElementById('email-input').text;
var abc = 0;

if  (text.indexOf('abc') != -1) 
{ abc = 1 };

var url = 'http://example.com/img.jpg' + '?t=' + escape(text) + abc;

document.getElementById('banner-img').src = url;

HIGH INPUT

LOW OUTPUT
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Example: information flow control in 
Javascript
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var text = document.getElementById('email-input').text;
var abc = 0;

if  (text.indexOf('abc') != -1) 
{ abc = 1 };

var url = 'http://example.com/img.jpg' + '?t=' + escape(text) + abc;

document.getElementById('banner-img').src = url;

HIGH INPUT

LOW OUTPUT

Explicit 
flow Implicit 

flow
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Enforcing non-interference

• Static, compile-time techniques
– Classify (=type) variables as either high or low
– Forbid:

• Assignments from high expressions to low variables
• Assignments to low variables in “high contexts”
• ...

• Two mature languages:
– Jif: a Java variant
– FlowCaml: an ML variant

• Experience: quite restrictive, labour intensive
– Probably only useful in high-security settings
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Enforcing non-interference

• Runtime techniques
– Label all data entering the program with an appropriate 

security level
– Propagate these levels throughout the computation
– Block output of high-labeled data to a low output channel

• Several mature and practical systems, but all with 
remaining holes

• Some sound systems, but too expensive
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Enforcing non-interference

• Alternative runtime technique: secure multi-execution
– Run the program twice: a high and a low copy
– Replace high inputs by default values for the low copy
– Suppress high outputs in the low copy and low outputs in the 

high copy
• First fully sound and fully precise mechanism
• But obviously expensive 

– Worst-case double the execution time or double the memory 
usage
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Does it work in a real browser?

• FlowFox is a variant of Firefox that implements 
information flow control for scripts by secure 
multi-execution
– Implemented en evaluated by Willem De Groef as 

part of his PhD thesis
• Evaluation:

– Is it “compatible” with the web?
– Is it efficient?

SECAPPDEV 2012 54



KATHOLIEKE
UNIVERSITEIT
LEUVEN

Compatibility
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Performance macro benchmarks
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Secure browsers: Conclusions
• The current isolation mechanism implemented in browsers (the 

“same-origin-policy”) has important flaws
• Yet, this isolation mechanism is one of the key security 

mechanisms offered by the web platform.
• Understanding the security guarantees that should be offered by 

browsers is an important challenge for the coming years:
– The browser as a “service-OS”
– How securely share/divide real-estate on the screen?
– Privacy protection

• Information flow control could be an important ingredient of the 
solution
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• Introduction
• Secure compilation to native code
• Secure browsers
• Conclusions
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Conclusions

• We have come a long way in improving software 
security
– Process improvements
– Coding guidelines
– Tooling
– …

• But rethinking platform security can substantially 
simplify things
– Can we get rid of low-level vulnerabilities?
– Can the platform provide generic, useful security 

guarantees?
SECAPPDEV 2012 59
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