Research Group

Building on sand:
Secure software on insecure platforms?

Frank Piessens
K.U.Leuven, Belgium

ACKNOWLEDGMENT: These slides include material from slide decks created by other
DistriNet researchers, including Pieter Agten, Willem De Groef, Lieven Desmet,
Dominique Devriese, and Raoul Strackx.

Overview

Introduction
— Some key challenges for software security

Secure compilation to native code
Secure browsers
Conclusions

We expect too much of developers!

 Understanding whether a piece of C code Is secure
requires:
— Understanding of the C language
 Approx complexity: 700 pages of spec
— Understanding the details of the compiler
 Approx complexity: 3.7 million lines of code
— Understanding the runtime library implementations
 Approx complexity: 1.7 million lines of code
— Understanding the operating system
« Thousands of pages of specs and millions of lines of code

— Understanding the details of the processor and other
hardware

And the Web Is many times worse!

* |t looks deceptively simple from a distance:

 But each of these components is staggeringly complex
 And they interact in unforeseen ways
o Let’s look at each of them in turn

The Browser

 Displays HTML
— The HTML5 spec is several hundreds of pages
« Executes JavaScript
— The ECMAScript 5.1 spec is several hundreds of pages
e Supports plugins
— Flash alone is as complex as JavaScript
 Supports a wide variety of protocols
— http, https, ftp, file, telnet, mailto, gopher, Idap, ...
« Supports a growing set of API's
— Audio, video, geolocation, client-side storage, messaging, ...

e Supports isolation between content from different sources
— i.e. a browser is more or less an operating system

The Server

e |Is typlcally an intricate distributed system itself:

- company network

FW2 -~ Fws

~application |
4 server I back-end

- web server

Web and Application server :
«Static HTML

Back-end:

_ _ *SQL based DB
*Dynamic content generation:

JSP, ASP, CGlI, PHP, ... *Mainframe
«J2EE, .NET, COM+ *Directory server

HTTP

Stateless

— But many mechanisms to add state on top
“Simple” protocol methods, that do arbitrary complex things
A proliferation of header fields

— That each need their own standard to describe what they do

Redirects
— Turn a simple request in a distributed computation

Relies on DNS
— Cfr. DNS-changer virus in the news the past weeks

And HTTP Is only one of the many web-protocols!

How do we deal with this today?

 Coding guidelines and tooling P
~ Forinstance: 89 Rules and 132 Recommendations in | S2°URE CODINS
the CERT C Secure Coding Standard i
— Source code analysis tools implement :":'-
heuristic checks to detect deviations from these rules ~ 1=.«5-==""
» Ad-hoc countermeasures in compiler / OS ' —

— Stack canaries / ASLR / taint-mode / ...
 This can lead to substantial software security

Tue CERT
) CDR&CLE SECURE

ODING STANDARD
improvement STANDAR:

— But is not the long-term solution

Two key challenges

 The programming language Is supposed to isolate the
programmer from details of the platform to which the
code Is compiled

— This fails miserably as far as security is concerned

 The platform Is supposed to provide basic security
guarantees to applications

— What is provided is a complete mismatch for what

applications need today

* Inthis talk we will discuss some directions to rectify this
situation

Overview

o Introduction

— What does it mean for a compiler to be “secure™?
* The principle of “source-based reasoning”

— How can we achieve secure compilation on
commodity platforms?

o Secure browsers

» Conclusions

What Is “secure” compilation?

« The compiler is the tool that Is supposed to
Isolate the programmer from the low-level
platform.

— It succeeds well with respect to “expected
functionality” of the code

— It fails with respect to “security properties” of the
code

« What are today’s compilers missing? What
would make a compiler “secure™?

Security depends on the power of

attacker

« Case 1: The attacker can only provide input to the
program under attack

— Example: a network service running on a hardened and well-
protected server machine

— For this case, a secure compiler should make sure that
behavior of programs is well-defined for all possible inputs

« Case 2: The attacker can interact with the program at a
lower-level

— Example: any client machine (where malware is a realistic
threat), or situations where the attacker can load code

— For this case, a secure compiler should preserve contextual

Case 1: high-level attackers

* A programming language is safe if its behavior Is
always well-defined

— E.g. a[i] = (int) x.f()

« Examples:
— Safe languages: Java, C#, Scala, ...
— Unsafe languages: C, C++, Pascal, ...

A compileris safe if any undefined behavior leads to
Immediate termination

— Compilers for safe languages are always safe
— Fully safe compilers for C typically have terrible performance

Case 1: high-level attackers

A safe compiler
— Protects its own abstractions (e.g. no stack smashing attack)
— Is inherently portable
— Mitigates the security impact of developer oversights/bugs!

An unsafe compiler puts the burden of avoiding
undefined situations on the programmer

This Is exactly why It is easier to write secure software
In Java than in C

But C compilers also get closer and closer to being safe

Case 2: low-level attackers

* |n many cases, attackers can do more than just provide
Input, for instance:
— Because they infected the OS with malware, or
— Because the application supports plugins, or

— Because the attacker can perform a code-injection attack
against native code In the run time, or

* All current (state-of-practice) compilers give up any form
of protection for this case

— As a consequence, it is impossible for instance to do secure
web-banking

Case 2: low-level attackers

 Can we compile “securely” against low-level
attackers?

« Some recent breakthroughs make this possible!

— A key enabler Is the development of security
architectures to support on-demand isolated code
execution on commodity hardware

— See for instance the PhD thesis of Bryan Parno,
winner of the 2010 ACM Doctoral Dissertation Award

|solated execution of critical code

App App Ap
N
S

O S Flicker

GPU. Chipset, DVALEY

(Picture taken from Parno’s PhD thesis)

KATHOLIEKE SECAPPDEV 2012 17
UNIVERSITEIT

LEUVEN

®

11111

Secure compilation to native code

 To construct a secure compliler:
— We start from a safe source-language

— We develop a native-code security architecture using
technigues similar to Parno’s Flicker

— We develop a compilation scheme from the source-
language to the native-code security architecture

— We show that for this compilation scheme, low-level
attackers have no more power than high-level
attackers.

(This is a substantial part of the PhD thesis's of Raoul Strackx and Pieter Agten)

Safe source language

Small, object-based,
single-threaded

Public methods,
private variables

Branches, loops,
local variables

Indirect method calls

No dynamic memory
allocation

Safe

object o {
M<(Int, Int)->Unit> lstnr = null;
Int value = 0;

Unit setlestnr (M< (Int, Int)->Unit> 1) {
lstnr = 1;
return unit;

}

Int getValue () {
return value;

}

Unit setValue (Int v) {
if (lstnr != null && value != v) {
lstnr (value, v);
}
value = v
return unit;

Contextual equivalence

High-level objects provide encapsulation

object o { object o {
Int value = 0; Int value = 0;
[...] [...]
Unit plusTwo () { Unit plusTwo () {
value += 2; value += 1;
value += 1;
return unit; return unit;
} }
} }
O Os

01 ~ O No third test object Ot can differentiate Oy from O,

High-level attackers

* [tis the responsibility of the programmer of a
module to protect against high-level attackers

— Such attackers take the form of arbitrary high-level
code Interacting with the object

— This supports the principle of source based
reasoning for security:

 One can find and understand any vulnerability in the code
by only looking at and understanding source code

* A good way of thinking about security properties
of code Is in terms of contextual equivalence

Example: integrity of a field

object o {

object o {
0; Int zero = 0;

Int zero =

Int m(M<e->Unit> cb) /{ Int m(M<e->Unit> cb) {

zero = 0; zero = 0;
Unit x = cb(); Unit x = cb();
i1f (zero == 0)

return 0; return 0;

else return 1;

))
O, O,

O1 ~ Os is saying “The callback cb () cannot modify the zero field”

Example: an object-invariant

object o { object o {
Int min = 0; Int min = 0;
Int max = 0; Int max = 0;
[...] [...]
Int m() { Int m() |
if (min <= max) {
return 0; return 0;
} else {
return 1;
}
} }
} }
O, O,

Oy ~ Oy is saying “Themin <= max invariant cannot be violated”

Summary

Attackers are represented as test objects
— High level attackers are source code test objects
— Low level attackers are machine code test objects

Successful attacks against security properties of a module

Contextual non-equivalence of the module with another module
that “checks the property”

Secure compilation should preserve contextual equivalence:
— If an attack exists at the low level
— Then, a low-level attacker can distinguish the two low-level modules
— Hence, a high-level attacker can distinguish the two high-level modules
— Hence, an attack exists at the high level
Hence, the attack can be explained at source code level

The low-level platform

o Standard Intel x86 style platform

— Processor with
 Program Counter
 Registers and a Stack Pointer
o Status (flags) registers

— 32-bit memory space mapping 32-bit addresses to
32-bit words

 Extended with a program-counter based memory
access control model

movl rgq Is
movs Irg g
movl rgq 1
add/sub rg rs
cmp rip ro
Jmp/Je/Jjl ri
call rj

Sample Instructions

Load word at address rs into rqg

Store word rg at address ry

Load the constant value I into rq

Arithmetic (sets flags)

Compare (sets flags)

Jumps

Call (pushes return address on stack)

Return from call (pops return address from stack)
Stop execution with result in RO

Standard compilation does not
preserve contextual equivalence

e e
Tne vatue = 0 OXOOOOOOCD:
Int secret = 0; 28 :

0x000000CE":
[] 0x000000CF:
.. _
Int tVal
at getvatuel) fieldO:
return value;
} 0x60000001:

} fieldl:

0x60000002:

movi RO 1
sub SP RO
movi R1 O
movs SP Rl

[...]

data: O

data: O

Low-level protection mechanism

0x000000

Unprotected memory
» Need some low-level protection

mechanism

=
» Program counter-based memory - Code
access control 2
2
° Data
Protected Unprotected -
from\ to .
Entry point | Code | Data
Protected r X r X rw Fw X
Unprotected X F'w X

OXFFFFFF

Low-level protection mechanism

 This can be implemented efficiently!

« Two possible implementation strategies:
— Flicker-style (has been implemented by Raoul Strackx)

[SPM]
Ring 3 Process 1 roce

W |coacy kernel

— In hardware (extend memory access control logic)

Ring 0

Compilation scheme

As expected:
— Compile methods and put in code section
— Allocate space for fields in data section
— Generate entry point for each method

But many tricky details:
— Handling returns of call-backs
— Handling potentially “poisoned” function pointers
— Protecting local variables / return addresses on the call stack

Pieter Agten implemented a compiler and proved it secure

Raoul Strackx implemented an efficient runtime platform to
compile to

Secure compilation: conclusions

 We can securely compile one module, and
provide very strong security assurance:
— Against code Injection attacks
— Against malware (even kernel-level)

e But this Is not a panacea

— Source-level vulnerabilities remain the responsibility
of the programmer

— We still lack trusted user interface
— |t would be good to support multiple modules

d [O IC NOITKS dlieal l..... e

Example source-level vulnerability

object Acc {
Int pin = 1234;
Int count = 0;

Unit test (Int t,
M<Int->Unit> cb) {
if (count == 3)
return unit;

1f (pin == t) {
cb (0) ;
count = 0; }
else |

cb (-1);
count = count+l; }

Example source-level vulnerability

object Acc { object Attacker {
Int pin = 1234; Int attempt = 0;
Int count = 0; Int success = 0;
Unit test (Int t, Unit notify(Int r) {
| M<Int->Unit> cb) { if (r == -1) |
1t (count -) attempt = attempt+1;
. reFurn unit; Acc.test (attempt, notify);
1f (pin == t) { .
Acc.test (success,notify);
cb (0) ;
count = 0; } }
else | else {
cb (1) ; success = attempt;

count = count+l; } }

Secure compilation: conclusions

« Compilation techniques that preserve contextual

equivalence address Key Challenge 1

— The programming language is supposed to isolate the programmer from
details of the platform to which the code is compiled

* Itis now OK to reason about security in terms of the source code

 We discussed how to do this for compiling towards the
x86 platform
« The same idea Is being explored for other platforms
— Including so-called “multi-tier” languages for the web platform
— This requires substantial additional machinery

Overview

* [ntroduction
 Secure compilation to native code

e Secure browsers
— The browser Is the new OS
— What security architecture should it offer?

Conclusions

Introduction

o Let's look at Key Challenge 2:

— The platform Is supposed to provide basic security
guarantees to applications

« Modern operating systems were built to isolate
multiple users

— But most PC’s (and definitely mobile devices) are
single user

— One single process on that OS Is by far the most
exposed and most security-critical component

 And it has (almost) no benefit from OS-provided isolation

Introduction

 The browser handles content (data and
executable code) from a variety of stakeholders
— Multiple open tabs
— Mashups within a single tab

 The browser implements isolation by means of
the Same Origin Policy
— Origin = (protocol, domain, port)

— Ad-hoc restrictions are imposed on interactions
between content from different origins

Third-party JavaScript Is everywhere

[~ o S
e _”"' DS http://www.standaard.be/ © ~ B & X || DS De Standaard Online {0 hg Ses

m OPINIES ECONOMIE.BIZ LIFE& STYLE ONTSPANNING IN BEELD VOOR ABONNEES T
1 -
L A dve rtIS el I le n tS Meestrecent Binnenland Buitenland Cultuur Media Sport Wetenschap Beroemd en bizar Regio Infotheek e-krant |

— Adhese ad network e L
o Social web =
— Facebook Connect
— Google+
— Twitter

— Feedsburner

OE
WEGENWAGHTER:

MEEST RECENT Meest aangeraden Meest gelezen

is een zeer
aarlijke situatie'

premier Yves Leterme noemt
[gende Belgische rente een 'zeer
rlijke situatie’. Het is een

es probleem, zegt hij. Maar

e onderhandelaars is het ook
slecht nieuws. 11,3 miljard besparen
zal misschien niet volstaan.

Gewonde bij schietpartlj op Brussels Afrport
'Aziatische beleggers zijn de saga in Europa beu’

' Leterme: ‘Dit is een zeer gevaarlijke situatie’

Bekening Dexia-redding loopt op

CHRONOLOGISCH OVERZICHT

vereffening van enkele van
zijn deelvennootschappen.
Door de nieuwe
waarbergregeling voor
codperanten kan dit de staat

. T k' " LEESMEER» LEESLATER+ 3 U ety chirch Tttt :ff fﬁ?\“
raC I n g = 'Aziatische beleggers zijn de saga in Europa beu' De nieuwe Audi Q3.
. K lles te wete: de Audi Q3 met
_ SCO recard research Rekening Dexia-redding loopt op Rijke e Rud O3 euwsbrier.
dl‘aag Titel*: De heer Mevrouw
: i ™ Arco, een grote ringen meer’ Naam® :
. aandeelhouder van Dexia, Voornaam® :
° We b An alytl CS wil overgaan tot de E-mail* :

[+] Ik wens de actualiteit van Audi te ontvangen via s-mail
* werplicht veld

Verstuur »

— Yahoo! Web Analytics o
_ Goog|e Ana|ytics S o Datzegtde Brugse

procureur Jean-Marie
; - Berkvens, nadat de
Gewonde na schietpartij op afge
i rijke
e Brussels Airport i
Bij een schietpartij op % LEES MEER» LEES LATER+
Brussels Airport is A

Woensdagmorgen Eeln man ¥ . .
gewond geraakt. Het Spuiten en slikken

& ' Verhit debat in
slachtoffer kwam tussenbij F__*f8 : moet kunnen op de

i VRT televisiestudio
een poging tot Een debat tussen twee
handtasdiefstal.

4k | 821

B Like +1 3 Follow @destandaard - 20.1K followers

Libanese politici is uit de hand

L\ LRESIMEER o L gelopen, live op antenne.

~O
PAG]

Integration of third-party JavaScript

 Two basic composition techniques

— Script inclusion

o Third-party script run’s in the execution context (I.e. origin) of
the embedding page

e Script has access to all the sensitive operations in this
context

— (Sandboxed) iframe Integration

* Third-party component runs in a separate security context
(I.e. the origin of the third-party service provider)

* |solation between service provider and embedding page is
realised via the Same-Origin Policy

Script inclusion vs iframe integration

Example: Google Maps integration

2§ Google Maps JavaScript API Example: Si...

t ('J') | [i’ http://code.google.com/apis/maps/docur 77 = |C‘.‘] [':l ~ Google

|

|2 Most Visited *§ Google | | Banken DS Standaard == deredactie.be [l De Tijd

I.v- <

o Scenario:

Ve

— User enters name of a location

— GPS lookup via Google Geocoding API
— Marker placed on the map via Gmap API

Google Maps code example

o o 1 P LS LT T D: 3. OFG/ TR/ XRTmI 3/ 00/ xATm I -STrict. atd >

e - - Click to show one page at a time
Copyright 2688 GO EIne.
Licensed under the Apache License, Version 2.8:
http://wew. apache. org/Licenses/LICENSE-2.8
-

f<html xmlns="hitp://www.w3.0rg/1999/xntml" xmlns:vs="urn:schemas-nicrosoft-com:vml >

<head>

<meta http-equiv="content-type* content="text/html; charset=UTF-8°/>
<titleGoogle Maps API Example: Simple Geocodinge/titles

<script sre="http://maps.google.con/maps?filemapibamp;v=26amp; key=ABQT) #7oQ-j |STdY: Jgpdg0_:
type="text/javascript ></script>
<script type="text/javascript™>

var map = null;
var geocoder = null;

function initialize() {
if (GBrowserIsCompatible()) {
map = new GMap2(document,getElementByld(“map_canvas®));
map. setCenter (new GLatlng(37.4419, -122.1419), 1);
map, setUTToDefault();
= new GC1 U H

}
]

S ddress) {
if (geocoder) {
geocoder, getLatlng(
address,
function(point) {
if (lpoint) {
alert(address + * not found");
} else {
map.setCenter (point, 15);
var marker = new GMarker(point, {draggable: true});
map . addOverlay (marker) ;
GEvent, addListener(marker, “dragend®, function() {
marker ,openInfowindowttml (marker, getLatlng() . tolrlValue(6));
i
GEvent, addListener(marker, “click", function() {
marker .openInfoWindowttml (marker. getlatlng() . toUriValue(6));

i
GEvent, trigger(marker, “click®);

<body enload="initialize()" onunload="GUnload(}">
<form action="#" onsubmit="showAddress(this. address.value); return false™s

Enter an address, and then drag the marker to tweak the location.

The latitude/longitude will appear in the infowindow after each geocode/drag.

</p>

-
<input type="text" style="width:356px" name="address" value="1608 Amphitheatre Pky, Mountain View, CA" />
<input type="submit® value="Go!" />

</p>

«div id="map_canvas® style="width: 686px; height: 408px"></div>

</ form=

</body>

</ htm

<€ Script inclusion

<€<— (Glue code

<«—— DOM element (div)

Summary

A browser renders a complex mix of data and
code from many stakeholders

« The Same-Origin-Policy and existing isolation

techniques for scripts tend to favor insecure
mixing of scripts

* [n addition, script-injection vulnerabilities (XSS)
may allow attackers to inject malicious scripts in
the mix

Security and privacy consequences

* A large-scale empirical study presented at CCS
2010 shows that this Is a real problem
— Several popular sites (including Alexa global-top 100
sites) use JavaScript to violate user privacy by:
o Stealing cookies
o History sniffing
e Behavior tracking
— Note that these attacks are invisible to the user

Dongseok Jang, Ranjit Jhala, Sorin Lerner, Hovav Shacham,
An empirical study of privacy-violating information flows in JavaScript web
applications, CCS 2010

A better browser security architecture

 So what kind of security architecture is required
from the browser?

— It should protect user data confidentiality and
Integrity

— In the presence of (possibly malicious) code
handling that data

— And it should be “compatible” with the current web

Information flow control to the rescue?

* Information flow control studies the enforcement of
policies such as:
— “Secret data should not leak to public channels”
— “Low Integrity data should not influence high-integrity data”

A base-line policy (usually too strict — needs further
relaxing) Is non-interference:

— Classify the inputs and outputs of a program into high-
security and low-security
— The low-outputs should not “depend on” the high inputs

— More precisely: there should not exist two executions with the
same low inputs but different high outputs

lllustration: non-interference

Secure:
Out_low :=In_low + 6

o8

Insecure:
Out_low :=In_high

Insecure:

if (In_high > 10) {
Out_low = 3;

}

else Out_low :=7

Example: information flow control in
Javascript

- HIGHINPUT |

var text = document.getElementByld(‘email-input’).text;
var abc = 0;

If (text.indexOf(‘abc’) I=-1)
{abc=1};

var url = 'http://example.com/img.jpg' + '?t=' + escape(text) + abc;

document.getElementByld(‘banner-img').src = url;

C —

Example: information flow control in
Javascript

- HIGHINPUT |

var text = document.getElementByld(‘email-input’).text;

var abc = 0;
Explicit
if (text.indexOf(‘abc') I=-1) | flow Implicit
{abc=1}; / flow

var url = 'http://example.com/img.jpg' + '?t=' + escape(text) + abc;

document.getElementByld(‘banner-img').src = url;

C —

Enforcing non-interference

o Static, compile-time techniques

— Classify (=type) variables as either high or low

— Forbid:

« Assignments from high expressions to low variables
« Assignments to low variables in “high contexts”

« Two mature languages:
— Jif: a Java variant
— FlowCaml; an ML variant

 EXperience: quite restrictive, labour intensive
— Probably only useful in high-security settings

Enforcing non-interference

 Runtime techniques

— Label all data entering the program with an appropriate
security level

— Propagate these levels throughout the computation
— Block output of high-labeled data to a low output channel

 Several mature and practical systems, but all with
remaining holes

« Some sound systems, but too expensive

Enforcing non-interference

o Alternative runtime technique: secure multi-execution
— Run the program twice: a high and a low copy
— Replace high inputs by default values for the low copy
— Suppress high outputs in the low copy and low outputs in the
high copy
o First fully sound and fully precise mechanism

 But obviously expensive

— Worst-case double the execution time or double the memory
usage
Dominique Devriese, Frank Piessens,

Noninterference through Secure Multi-execution,
IEEE Symposium on Security and Privacy, 2010

1 var text = decument.-getElementByld

> i undefined;
svar abc = 0;

s if(text.indexOf(’abc’)!=-1) { abc =1 };
svar url = ’http://example.com/img. jpg’

6 + '?t=" + escape(text) + abc;
7 document .getElementById(’banner-img’)
8 .src = url;

(a) Execution at L security level.

1var text = document.getElementById

2 ("email-input’).text;

svar abc = 0;
s1f(text.indexOf(’abc’)!=-1) { abc =1 };
svar url = "http://example.com/img. jpg’

6 + '?t=" + escape(text) + abc;

7 deocumentgetElementByIdC banner—img—

8 —src—=-url:

(b) Execution at H security level.

Does it work in a real browser?

 FlowFox Is a variant of Firefox that implements
information flow control for scripts by secure
multi-execution
— Implemented en evaluated by Willem De Groef as
part of his PhD thesis

o Evaluation:

— Is It “compatible” with the web?
— Is It efficient?

Compatibility

Equality FLOWFOX- Firefox
Equality Firefox - Firefox

60% | | | |

Performance macro benchmarks

H

Mozilla Firefox
o
FLowFox

160%
140%

g
|
120% |-
100% |-
80%
60%
40% |
20% -
0%
5y %
o ©° %

Secure browsers: Conclusions

The current isolation mechanism implemented in browsers (the
“same-origin-policy”) has important flaws

Yet, this isolation mechanism is one of the key security
mechanisms offered by the web platform.

Understanding the security guarantees that should be offered by
browsers Is an important challenge for the coming years:
— The browser as a “service-0OS”

— How securely share/divide real-estate on the screen?
— Privacy protection

Information flow control could be an important ingredient of the
solution

Overview

Introduction

Secure compilation to native code
Secure browsers

Conclusions

Conclusions

 \We have come a long way in improving software
security
— Process improvements
— Coding guidelines
— Tooling

o But rethinking platform security can substantially
simplify things

— Can we get rid of low-level vulnerabilities?

— Can the platform provide generic, useful security
guarantees?

	Building on sand: �Secure software on insecure platforms?
	Overview
	We expect too much of developers!
	And the Web is many times worse!
	The Browser
	The Server
	HTTP
	How do we deal with this today?
	Two key challenges
	Overview
	What is “secure” compilation?
	Security depends on the power of attacker
	Case 1: high-level attackers
	Case 1: high-level attackers
	Case 2: low-level attackers
	Case 2: low-level attackers
	Isolated execution of critical code
	Secure compilation to native code
	Safe source language
	Contextual equivalence
	High-level attackers
	Example: integrity of a field
	Example: an object-invariant
	Summary
	The low-level platform
	Sample instructions
	Standard compilation does not preserve contextual equivalence
	Low-level protection mechanism
	Low-level protection mechanism
	Compilation scheme
	Secure compilation: conclusions
	Example source-level vulnerability
	Example source-level vulnerability
	Secure compilation: conclusions
	Overview
	Introduction
	Introduction
	Third-party JavaScript is everywhere
	Integration of third-party JavaScript
	Script inclusion vs iframe integration
	Example: Google Maps integration
	Google Maps code example
	Summary
	Security and privacy consequences
	A better browser security architecture
	Information flow control to the rescue?
	Illustration: non-interference
	Example: information flow control in Javascript
	Example: information flow control in Javascript
	Enforcing non-interference
	Enforcing non-interference
	Enforcing non-interference
	Slide Number 53
	Does it work in a real browser?
	Compatibility
	Performance macro benchmarks
	Secure browsers: Conclusions
	Overview
	Conclusions

