
KATHOLIEKE
UNIVERSITEIT
LEUVEN

1SECAPPDEV 2012

Building on sand:
Secure software on insecure platforms?

Frank Piessens
K.U.Leuven, Belgium

ACKNOWLEDGMENT: These slides include material from slide decks created by other
DistriNet researchers, including Pieter Agten, Willem De Groef, Lieven Desmet,
Dominique Devriese, and Raoul Strackx.

KATHOLIEKE
UNIVERSITEIT
LEUVEN

SECAPPDEV 2012 2

Overview

• Introduction
– Some key challenges for software security

• Secure compilation to native code
• Secure browsers
• Conclusions

KATHOLIEKE
UNIVERSITEIT
LEUVEN

We expect too much of developers!

• Understanding whether a piece of C code is secure
requires:
– Understanding of the C language

• Approx complexity: 700 pages of spec
– Understanding the details of the compiler

• Approx complexity: 3.7 million lines of code
– Understanding the runtime library implementations

• Approx complexity: 1.7 million lines of code
– Understanding the operating system

• Thousands of pages of specs and millions of lines of code
– Understanding the details of the processor and other

hardware
SECAPPDEV 2012 3

KATHOLIEKE
UNIVERSITEIT
LEUVEN

And the Web is many times worse!

• It looks deceptively simple from a distance:

• But each of these components is staggeringly complex
• And they interact in unforeseen ways
• Let’s look at each of them in turn

SECAPPDEV 2012 4

Browser ServerHTTP

KATHOLIEKE
UNIVERSITEIT
LEUVEN

The Browser
• Displays HTML

– The HTML5 spec is several hundreds of pages
• Executes JavaScript

– The ECMAScript 5.1 spec is several hundreds of pages
• Supports plugins

– Flash alone is as complex as JavaScript
• Supports a wide variety of protocols

– http, https, ftp, file, telnet, mailto, gopher, ldap, …
• Supports a growing set of API’s

– Audio, video, geolocation, client-side storage, messaging, …
• Supports isolation between content from different sources

– i.e. a browser is more or less an operating system

SECAPPDEV 2012 5

KATHOLIEKE
UNIVERSITEIT
LEUVEN

The Server

• Is typically an intricate distributed system itself:

SECAPPDEV 2012 6

back-endapplication
server

FW2 FW3 4

company network

3
web server

FW1 21

1
Web and Application server :

•Static HTML

•Dynamic content generation:
JSP, ASP, CGI, PHP, …

•J2EE, .NET, COM+

Back-end:

•SQL based DB

•Mainframe

•Directory server

Internet

KATHOLIEKE
UNIVERSITEIT
LEUVEN

HTTP
• Stateless

– But many mechanisms to add state on top
• “Simple” protocol methods, that do arbitrary complex things
• A proliferation of header fields

– That each need their own standard to describe what they do
• Redirects

– Turn a simple request in a distributed computation
• Relies on DNS

– Cfr. DNS-changer virus in the news the past weeks
• And HTTP is only one of the many web-protocols!

SECAPPDEV 2012 7

KATHOLIEKE
UNIVERSITEIT
LEUVEN

How do we deal with this today?
• Coding guidelines and tooling

– For instance: 89 Rules and 132 Recommendations in
the CERT C Secure Coding Standard

– Source code analysis tools implement
heuristic checks to detect deviations from these rules

• Ad-hoc countermeasures in compiler / OS
– Stack canaries / ASLR / taint-mode / …

• This can lead to substantial software security
improvement
– But is not the long-term solution

SECAPPDEV 2012 8

KATHOLIEKE
UNIVERSITEIT
LEUVEN

Two key challenges

• The programming language is supposed to isolate the
programmer from details of the platform to which the
code is compiled
– This fails miserably as far as security is concerned

• The platform is supposed to provide basic security
guarantees to applications
– What is provided is a complete mismatch for what

applications need today
• In this talk we will discuss some directions to rectify this

situation

SECAPPDEV 2012 9

KATHOLIEKE
UNIVERSITEIT
LEUVEN

SECAPPDEV 2012 10

Overview

• Introduction
• Secure compilation to native code

– What does it mean for a compiler to be “secure”?
• The principle of “source-based reasoning”

– How can we achieve secure compilation on
commodity platforms?

• Secure browsers
• Conclusions

KATHOLIEKE
UNIVERSITEIT
LEUVEN

What is “secure” compilation?

• The compiler is the tool that is supposed to
isolate the programmer from the low-level
platform.
– It succeeds well with respect to “expected

functionality” of the code
– It fails with respect to “security properties” of the

code
• What are today’s compilers missing? What

would make a compiler “secure”?

SECAPPDEV 2012 11

KATHOLIEKE
UNIVERSITEIT
LEUVEN

Security depends on the power of
attacker

• Case 1: The attacker can only provide input to the
program under attack
– Example: a network service running on a hardened and well-

protected server machine
– For this case, a secure compiler should make sure that

behavior of programs is well-defined for all possible inputs
• Case 2: The attacker can interact with the program at a

lower-level
– Example: any client machine (where malware is a realistic

threat), or situations where the attacker can load code
– For this case, a secure compiler should preserve contextual

equivalence
SECAPPDEV 2012 12

KATHOLIEKE
UNIVERSITEIT
LEUVEN

Case 1: high-level attackers

• A programming language is safe if its behavior is
always well-defined
– E.g. a[i] = (int) x.f()

• Examples:
– Safe languages: Java, C#, Scala, …
– Unsafe languages: C, C++, Pascal, …

• A compiler is safe if any undefined behavior leads to
immediate termination
– Compilers for safe languages are always safe
– Fully safe compilers for C typically have terrible performance

SECAPPDEV 2012 13

KATHOLIEKE
UNIVERSITEIT
LEUVEN

Case 1: high-level attackers

• A safe compiler
– Protects its own abstractions (e.g. no stack smashing attack)
– Is inherently portable
– Mitigates the security impact of developer oversights/bugs!

• An unsafe compiler puts the burden of avoiding
undefined situations on the programmer

• This is exactly why it is easier to write secure software
in Java than in C

• But C compilers also get closer and closer to being safe

SECAPPDEV 2012 14

KATHOLIEKE
UNIVERSITEIT
LEUVEN

Case 2: low-level attackers

• In many cases, attackers can do more than just provide
input, for instance:
– Because they infected the OS with malware, or
– Because the application supports plugins, or
– Because the attacker can perform a code-injection attack

against native code in the run time, or
– …

• All current (state-of-practice) compilers give up any form
of protection for this case
– As a consequence, it is impossible for instance to do secure

web-banking

SECAPPDEV 2012 15

KATHOLIEKE
UNIVERSITEIT
LEUVEN

Case 2: low-level attackers

• Can we compile “securely” against low-level
attackers?

• Some recent breakthroughs make this possible!
– A key enabler is the development of security

architectures to support on-demand isolated code
execution on commodity hardware

– See for instance the PhD thesis of Bryan Parno,
winner of the 2010 ACM Doctoral Dissertation Award

SECAPPDEV 2012 16

KATHOLIEKE
UNIVERSITEIT
LEUVEN

Isolated execution of critical code

SECAPPDEV 2012 17

(Picture taken from Parno’s PhD thesis)

KATHOLIEKE
UNIVERSITEIT
LEUVEN

Secure compilation to native code

• To construct a secure compiler:
– We start from a safe source-language
– We develop a native-code security architecture using

techniques similar to Parno’s Flicker
– We develop a compilation scheme from the source-

language to the native-code security architecture
– We show that for this compilation scheme, low-level

attackers have no more power than high-level
attackers.

SECAPPDEV 2012 18

(This is a substantial part of the PhD thesis's of Raoul Strackx and Pieter Agten)

KATHOLIEKE
UNIVERSITEIT
LEUVEN

Safe source language

SECAPPDEV 2012 19

KATHOLIEKE
UNIVERSITEIT
LEUVEN

Contextual equivalence

SECAPPDEV 2012 20

KATHOLIEKE
UNIVERSITEIT
LEUVEN

High-level attackers

• It is the responsibility of the programmer of a
module to protect against high-level attackers
– Such attackers take the form of arbitrary high-level

code interacting with the object
– This supports the principle of source based

reasoning for security:
• One can find and understand any vulnerability in the code

by only looking at and understanding source code

• A good way of thinking about security properties
of code is in terms of contextual equivalence

SECAPPDEV 2012 21

KATHOLIEKE
UNIVERSITEIT
LEUVEN

Example: integrity of a field

SECAPPDEV 2012 22

KATHOLIEKE
UNIVERSITEIT
LEUVEN

Example: an object-invariant

SECAPPDEV 2012 23

KATHOLIEKE
UNIVERSITEIT
LEUVEN

Summary
• Attackers are represented as test objects

– High level attackers are source code test objects
– Low level attackers are machine code test objects

• Successful attacks against security properties of a module
=
Contextual non-equivalence of the module with another module
that “checks the property”

• Secure compilation should preserve contextual equivalence:
– If an attack exists at the low level
– Then, a low-level attacker can distinguish the two low-level modules
– Hence, a high-level attacker can distinguish the two high-level modules
– Hence, an attack exists at the high level
– Hence, the attack can be explained at source code level

SECAPPDEV 2012 24

KATHOLIEKE
UNIVERSITEIT
LEUVEN

The low-level platform

• Standard Intel x86 style platform
– Processor with

• Program Counter
• Registers and a Stack Pointer
• Status (flags) registers

– 32-bit memory space mapping 32-bit addresses to
32-bit words

• Extended with a program-counter based memory
access control model

SECAPPDEV 2012 25

KATHOLIEKE
UNIVERSITEIT
LEUVEN

Sample instructions

SECAPPDEV 2012 26

KATHOLIEKE
UNIVERSITEIT
LEUVEN

Standard compilation does not
preserve contextual equivalence

SECAPPDEV 2012 27

KATHOLIEKE
UNIVERSITEIT
LEUVEN

Low-level protection mechanism

SECAPPDEV 2012 28

KATHOLIEKE
UNIVERSITEIT
LEUVEN

Low-level protection mechanism

• This can be implemented efficiently!
• Two possible implementation strategies:

– Flicker-style (has been implemented by Raoul Strackx)

– In hardware (extend memory access control logic)

SECAPPDEV 2012 29

KATHOLIEKE
UNIVERSITEIT
LEUVEN

Compilation scheme
• As expected:

– Compile methods and put in code section
– Allocate space for fields in data section
– Generate entry point for each method
– …

• But many tricky details:
– Handling returns of call-backs
– Handling potentially “poisoned” function pointers
– Protecting local variables / return addresses on the call stack

• Pieter Agten implemented a compiler and proved it secure
• Raoul Strackx implemented an efficient runtime platform to

compile to

SECAPPDEV 2012 30

KATHOLIEKE
UNIVERSITEIT
LEUVEN

Secure compilation: conclusions

• We can securely compile one module, and
provide very strong security assurance:
– Against code injection attacks
– Against malware (even kernel-level)

• But this is not a panacea
– Source-level vulnerabilities remain the responsibility

of the programmer
– We still lack trusted user interface
– It would be good to support multiple modules

• (This actually works already in our prototype)
SECAPPDEV 2012 31

KATHOLIEKE
UNIVERSITEIT
LEUVEN

Example source-level vulnerability

SECAPPDEV 2012 32

KATHOLIEKE
UNIVERSITEIT
LEUVEN

Example source-level vulnerability

SECAPPDEV 2012 33

KATHOLIEKE
UNIVERSITEIT
LEUVEN

Secure compilation: conclusions

• Compilation techniques that preserve contextual
equivalence address Key Challenge 1
– The programming language is supposed to isolate the programmer from

details of the platform to which the code is compiled
• It is now OK to reason about security in terms of the source code

• We discussed how to do this for compiling towards the
x86 platform

• The same idea is being explored for other platforms
– Including so-called “multi-tier” languages for the web platform
– This requires substantial additional machinery

SECAPPDEV 2012 34

KATHOLIEKE
UNIVERSITEIT
LEUVEN

SECAPPDEV 2012 35

Overview

• Introduction
• Secure compilation to native code
• Secure browsers

– The browser is the new OS
– What security architecture should it offer?

• Conclusions

KATHOLIEKE
UNIVERSITEIT
LEUVEN

Introduction

• Let’s look at Key Challenge 2:
– The platform is supposed to provide basic security

guarantees to applications
• Modern operating systems were built to isolate

multiple users
– But most PC’s (and definitely mobile devices) are

single user
– One single process on that OS is by far the most

exposed and most security-critical component
• And it has (almost) no benefit from OS-provided isolation

SECAPPDEV 2012 36

KATHOLIEKE
UNIVERSITEIT
LEUVEN

Introduction

• The browser handles content (data and
executable code) from a variety of stakeholders
– Multiple open tabs
– Mashups within a single tab

• The browser implements isolation by means of
the Same Origin Policy
– Origin = (protocol, domain, port)
– Ad-hoc restrictions are imposed on interactions

between content from different origins

SECAPPDEV 2012 37

KATHOLIEKE
UNIVERSITEIT
LEUVEN

Third-party JavaScript is everywhere

• Advertisements
– Adhese ad network

• Social web
– Facebook Connect
– Google+
– Twitter
– Feedsburner

• Tracking
– Scorecardresearch

• Web Analytics
– Yahoo! Web Analytics
– Google Analytics

• …

38SECAPPDEV 2012

KATHOLIEKE
UNIVERSITEIT
LEUVEN

Integration of third-party JavaScript

• Two basic composition techniques
– Script inclusion

• Third-party script run’s in the execution context (i.e. origin) of
the embedding page

• Script has access to all the sensitive operations in this
context

– (Sandboxed) iframe integration
• Third-party component runs in a separate security context

(i.e. the origin of the third-party service provider)
• Isolation between service provider and embedding page is

realised via the Same-Origin Policy

39SECAPPDEV 2012

KATHOLIEKE
UNIVERSITEIT
LEUVEN

Script inclusion vs iframe integration

40

<html>
<body>
…
<script src=“http://3rdparty.com/script.js”>
</script>
…
</body>
</html>

<html>
<body>
…
<iframe src=“http://3rdparty.com/frame.html”>
</iframe>
…
</body>
</html>

3rd party

3rd party
SECAPPDEV 2012

KATHOLIEKE
UNIVERSITEIT
LEUVEN

Example: Google Maps integration

• Scenario:
– User enters name of a location
– GPS lookup via Google Geocoding API
– Marker placed on the map via Gmap API

41SECAPPDEV 2012

KATHOLIEKE
UNIVERSITEIT
LEUVEN

Google Maps code example

Script inclusion

Glue code

DOM element (div)

42SECAPPDEV 2012

KATHOLIEKE
UNIVERSITEIT
LEUVEN

Summary

• A browser renders a complex mix of data and
code from many stakeholders

• The Same-Origin-Policy and existing isolation
techniques for scripts tend to favor insecure
mixing of scripts

• In addition, script-injection vulnerabilities (XSS)
may allow attackers to inject malicious scripts in
the mix

SECAPPDEV 2012 43

KATHOLIEKE
UNIVERSITEIT
LEUVEN

Security and privacy consequences

• A large-scale empirical study presented at CCS
2010 shows that this is a real problem
– Several popular sites (including Alexa global-top 100

sites) use JavaScript to violate user privacy by:
• Stealing cookies
• History sniffing
• Behavior tracking

– Note that these attacks are invisible to the user

SECAPPDEV 2012 44

Dongseok Jang, Ranjit Jhala, Sorin Lerner, Hovav Shacham,
An empirical study of privacy-violating information flows in JavaScript web
applications, CCS 2010

KATHOLIEKE
UNIVERSITEIT
LEUVEN

A better browser security architecture

• So what kind of security architecture is required
from the browser?
– It should protect user data confidentiality and

integrity
– In the presence of (possibly malicious) code

handling that data
– And it should be “compatible” with the current web

SECAPPDEV 2012 45

KATHOLIEKE
UNIVERSITEIT
LEUVEN

Information flow control to the rescue?

• Information flow control studies the enforcement of
policies such as:
– “Secret data should not leak to public channels”
– “Low integrity data should not influence high-integrity data”

• A base-line policy (usually too strict – needs further
relaxing) is non-interference:
– Classify the inputs and outputs of a program into high-

security and low-security
– The low-outputs should not “depend on” the high inputs
– More precisely: there should not exist two executions with the

same low inputs but different high outputs

SECAPPDEV 2012 46

KATHOLIEKE
UNIVERSITEIT
LEUVEN

Illustration: non-interference

SECAPPDEV 2012 47

P

1 7

7 3

Secure:
Out_low := In_low + 6

Insecure:
Out_low := In_high

Insecure:
if (In_high > 10) {

Out_low := 3;
}
else Out_low := 7

KATHOLIEKE
UNIVERSITEIT
LEUVEN

Example: information flow control in
Javascript

SECAPPDEV 2012 48

var text = document.getElementById('email-input').text;
var abc = 0;

if (text.indexOf('abc') != -1)
{ abc = 1 };

var url = 'http://example.com/img.jpg' + '?t=' + escape(text) + abc;

document.getElementById('banner-img').src = url;

HIGH INPUT

LOW OUTPUT

KATHOLIEKE
UNIVERSITEIT
LEUVEN

Example: information flow control in
Javascript

SECAPPDEV 2012 49

var text = document.getElementById('email-input').text;
var abc = 0;

if (text.indexOf('abc') != -1)
{ abc = 1 };

var url = 'http://example.com/img.jpg' + '?t=' + escape(text) + abc;

document.getElementById('banner-img').src = url;

HIGH INPUT

LOW OUTPUT

Explicit
flow Implicit

flow

KATHOLIEKE
UNIVERSITEIT
LEUVEN

Enforcing non-interference

• Static, compile-time techniques
– Classify (=type) variables as either high or low
– Forbid:

• Assignments from high expressions to low variables
• Assignments to low variables in “high contexts”
• ...

• Two mature languages:
– Jif: a Java variant
– FlowCaml: an ML variant

• Experience: quite restrictive, labour intensive
– Probably only useful in high-security settings

SECAPPDEV 2012 50

KATHOLIEKE
UNIVERSITEIT
LEUVEN

Enforcing non-interference

• Runtime techniques
– Label all data entering the program with an appropriate

security level
– Propagate these levels throughout the computation
– Block output of high-labeled data to a low output channel

• Several mature and practical systems, but all with
remaining holes

• Some sound systems, but too expensive

SECAPPDEV 2012 51

KATHOLIEKE
UNIVERSITEIT
LEUVEN

Enforcing non-interference

• Alternative runtime technique: secure multi-execution
– Run the program twice: a high and a low copy
– Replace high inputs by default values for the low copy
– Suppress high outputs in the low copy and low outputs in the

high copy
• First fully sound and fully precise mechanism
• But obviously expensive

– Worst-case double the execution time or double the memory
usage

SECAPPDEV 2012 52

Dominique Devriese, Frank Piessens,
Noninterference through Secure Multi-execution,
IEEE Symposium on Security and Privacy, 2010

KATHOLIEKE
UNIVERSITEIT
LEUVEN

SECAPPDEV 2012 53

KATHOLIEKE
UNIVERSITEIT
LEUVEN

Does it work in a real browser?

• FlowFox is a variant of Firefox that implements
information flow control for scripts by secure
multi-execution
– Implemented en evaluated by Willem De Groef as

part of his PhD thesis
• Evaluation:

– Is it “compatible” with the web?
– Is it efficient?

SECAPPDEV 2012 54

KATHOLIEKE
UNIVERSITEIT
LEUVEN

Compatibility

SECAPPDEV 2012 55

KATHOLIEKE
UNIVERSITEIT
LEUVEN

Performance macro benchmarks

SECAPPDEV 2012 56

KATHOLIEKE
UNIVERSITEIT
LEUVEN

Secure browsers: Conclusions
• The current isolation mechanism implemented in browsers (the

“same-origin-policy”) has important flaws
• Yet, this isolation mechanism is one of the key security

mechanisms offered by the web platform.
• Understanding the security guarantees that should be offered by

browsers is an important challenge for the coming years:
– The browser as a “service-OS”
– How securely share/divide real-estate on the screen?
– Privacy protection

• Information flow control could be an important ingredient of the
solution

SECAPPDEV 2012 57

KATHOLIEKE
UNIVERSITEIT
LEUVEN

SECAPPDEV 2012 58

Overview

• Introduction
• Secure compilation to native code
• Secure browsers
• Conclusions

KATHOLIEKE
UNIVERSITEIT
LEUVEN

Conclusions

• We have come a long way in improving software
security
– Process improvements
– Coding guidelines
– Tooling
– …

• But rethinking platform security can substantially
simplify things
– Can we get rid of low-level vulnerabilities?
– Can the platform provide generic, useful security

guarantees?
SECAPPDEV 2012 59

	Building on sand: �Secure software on insecure platforms?
	Overview
	We expect too much of developers!
	And the Web is many times worse!
	The Browser
	The Server
	HTTP
	How do we deal with this today?
	Two key challenges
	Overview
	What is “secure” compilation?
	Security depends on the power of attacker
	Case 1: high-level attackers
	Case 1: high-level attackers
	Case 2: low-level attackers
	Case 2: low-level attackers
	Isolated execution of critical code
	Secure compilation to native code
	Safe source language
	Contextual equivalence
	High-level attackers
	Example: integrity of a field
	Example: an object-invariant
	Summary
	The low-level platform
	Sample instructions
	Standard compilation does not preserve contextual equivalence
	Low-level protection mechanism
	Low-level protection mechanism
	Compilation scheme
	Secure compilation: conclusions
	Example source-level vulnerability
	Example source-level vulnerability
	Secure compilation: conclusions
	Overview
	Introduction
	Introduction
	Third-party JavaScript is everywhere
	Integration of third-party JavaScript
	Script inclusion vs iframe integration
	Example: Google Maps integration
	Google Maps code example
	Summary
	Security and privacy consequences
	A better browser security architecture
	Information flow control to the rescue?
	Illustration: non-interference
	Example: information flow control in Javascript
	Example: information flow control in Javascript
	Enforcing non-interference
	Enforcing non-interference
	Enforcing non-interference
	Slide Number 53
	Does it work in a real browser?
	Compatibility
	Performance macro benchmarks
	Secure browsers: Conclusions
	Overview
	Conclusions

