
Security of Web Mashups: a Survey

Philippe De Ryck, Maarten Decat, Lieven Desmet,
Frank Piessens, and Wouter Joosen

IBBT-DistriNet
Katholieke Universiteit Leuven

3001 Leuven, Belgium

{firstname.lastname}@cs.kuleuven.be

Abstract Web mashups, a new web application development paradigm,
combine content and services from multiple origins into a new service.
Web mashups heavily depend on interaction between content from mul-
tiple origins and communication with different origins. Contradictory,
mashup security relies on separation for protecting code and data. Tra-
ditional HTML techniques fail to address both the interaction/commu-
nication needs and the separation needs. This paper proposes concrete
requirements for building secure mashups, divided in four categories:
separation, interaction, communication and advanced behavior control.
For the first three categories, all currently available techniques are dis-
cussed in light of the proposed requirements. For the last category, we
present three relevant academic research results with high potential. We
conclude the paper by highlighting the most applicable techniques for
building secure mashups, because of functionality and standardization.
We also discuss opportunities for future improvements and developments.

1 Introduction

The evolution within web 2.0 has led to a new application type, called a web
mashup – simply mashup from now on. A mashup is a composed application,
using elements from different sources. The most simple form of mashups are web
pages incorporating advertisements, which come from an external origin. More
complex examples combine content from multiple sources into a new service.
The classical example case is HousingMaps, which collects listings of real estate
from Craigslist and visualizes their location on Google Maps. There are numerous
mainstream mashup examples, of which iGoogle and Facebook are widely known.
Mashups have also found their way into enterprise scenarios, where they can
be used to create quick views on data coming from multiple sources within
and outside the enterprise. Development tools for mashup scenarios have been
included in the portfolio of IT application and service providers [12,16,17,18].

A mashup can be defined as “a web application that combines content or ser-
vices from more than one origin to create a new service”. By combining multiple
separate services into a new application, a mashup generates added value, which
is one of the most important incentives behind building mashups. Mashups also



succeed in maximizing content reuse, even from services that never intended to
produce reusable data. Additionally, mashups are flexible and lightweight ap-
plications, since they merely gather and combine information, thus do not need
complex application logic. These three advantages have driven the growth of
mashups, which has led to the need of support for strong security requirements.

The discussion of the security requirements will become more concrete if
applied to an example application: a financial mashup, which provides inte-
grated access to your financial and stock information. The mashup contains a
component from your bank, an advising component from a brokerage firm and
an advertising component. The bank and brokerage component need to inter-
act, to provide relevant advice regarding your stock portfolio and interests; the
brokerage and banking component provide the advertising component with key-
words about your financial habits, so that you receive targeted advertisements.
The bank component and brokerage component need to communicate with the
servers of their firm, to retrieve the most recent information. The advertising
component needs to communicate with servers from multiple advertising firms,
to retrieve relevant advertisements.

A first contribution of this paper is the concrete definition of the security
requirements for mashup applications, which can be used to examine existing
security mechanisms. Second, we contribute a detailed overview of the current
state-of-practice and adopted state-of-the-art concerning mashup security tech-
niques. Third, we highlight a few important academic results, as well as discuss
potential future improvements and developments to enhance support for the
mashup security requirements.

In the remainder of this paper, we will specify the security requirements for
mashups (Section 2), followed by a detailed overview of the currently available
techniques (Section 3, 4 and 5). We also discuss a few promising state-of-the-art
techniques, which can contribute to the future of mashup security (Section 6).
We conclude the paper in Section 7 with an overview of the presented tech-
niques and their capabilities, as well as a detailed discussion of potential future
improvements or evolutions of mashup security mechanisms.

2 Problems with Mashup Security

Examining the security requirements for mashups has led to the specification
of four specific categories, of which the security-specific requirements have been
determined. The following overview discusses these categories and requirements,
which will be used to discuss existing security mechanisms.

C1. Separation Components need to be separated from each other, to ensure
the following security properties:
a. DOM: ensures that the component’s part of the DOM tree is separated

from other components.
b. Script: ensures that the component’s scripts can not be influenced by

other components.



c. Applicable in same domain: ensures that the separation techniques
can also be applied to different components belonging to the same do-
main.

C2. Interaction Regardless of their separation, a component requires interac-
tion with other components and the host page. This interaction is subject
to the following requirements:
a. Confidentiality: ensures that sensitive information can not be stolen

from interactions between components.
b. Integrity: ensures that the contents of an interaction can not be modified

without the knowledge of the interacting components.
c. Mutual authentication: ensures that the interacting components can

establish who they are interacting with.
C3. Communication Components need to be able to communicate with the

mashup provider, as well as with other parties. This requires the following
properties:
a. Cross-domain: components should be able to communicate with other

origins than the origin to which they belong.
b. Authentication: a service receiving messages should be able to identify

the origin of the message.
C4. Behavior Control Control over specific behavior of components is needed

to selectively allow or disallow specific functionality. This category is cur-
rently state-of-the-art and too broad to grasp in a few categories.
Currently, mashup security is based on the de facto security policy of the web:

the Same Origin Policy (SOP) [34]. The SOP states that scripts from one origin
should not be able to access content from other origins. This prevents scripts
from stealing data, cookies or login credentials from other sites. Additionally
to the SOP, browsers also apply a frame navigation policy, which restricts the
navigation of frames to its descendants [3].

The security provided by the traditional mechanisms for building mashups
relies on the application of these browser security policies. Loading components
from different origins in Iframes causes them to be separated by the SOP. Using
script inclusion causes the script to be loaded in the protection domain of the
including page, which is a straightforward way to achieve interaction between
components. Communication with the origin of the page containing the script
can be achieved using the XHR object of the JavaScript language.

These traditional mechanisms have led to two different approaches for build-
ing mashups: server-side composition and client-side composition (Figure 1). The
former combines the entire mashup at the server side and serves it as a whole
to the client, while the latter provides a template to the client, which retrieves
all pieces separately and composes the mashup at the client side, conform to the
provided template. The difference between both approaches is fading as hybrid
models are being used, where separate components and pre-composed content
are combined. In either model, there are no significant technical challenges. The
responsibility for security always lies with the mashup integrator, taking into
account the security requirements of the different components and their stake-
holders.



Component

Server

Client

Server

Client

Mashup Mashup

ComponentTemplate

Figure 1. Server-side mashup (left) and client-side mashup (right).

Examining the traditional techniques in the light of the previously proposed
security requirements yields some interesting results. Iframes offer full separa-
tion between different origins, but not within the same origin, and provide no
interaction between components. Script inclusion offers no separation at all, but
provides full interaction. This interaction is not authenticated, nor can confiden-
tiality or integrity be ensured. As far as communication is concerned, XHR does
not offer any cross-domain communication. These results show the pressing need
for secure techniques to enable separation while still allowing secure interaction,
as well as secure communication. Additionally, providing behavior control for
components will only strengthen the security of mashups.

In the following sections, we provide a detailed discussion of both state-of-
practice and state-of-the-art in mashup security. Section 3 focuses on specific
techniques enabling separation and providing interaction. Section 4 presents
techniques that enable the isolation of JavaScript modules within the same exe-
cution environment. Section 5 discusses techniques which help to achieve commu-
nication with remote parties. In Section 6, we discuss state-of-the-art academic
research that supports fine-grained control over specific security-related aspects.

3 Separation and Interaction

The security requirements demand stronger separation guarantees, but also re-
quire the possibility of interaction between separated components. In this section
we discuss several techniques which approach this problem on a document basis.
Script-based solutions are discussed in the next section.

The solutions proposed here use three different points of view to address
the needed security requirements: (i) leverage existing separation mechanisms
and provide controlled interaction (Subspace, Fragment Identifier Messaging and
postMessage), (ii) strengthen the existing separation mechanisms, while preserv-
ing interaction (module tag and sandbox attribute), and (iii) start from scratch,
while honoring the already existing legacy by ensuring some form of backwards
compatibility (MashupOS and OMash).

3.1 Subspace

Subspace [19] enables interaction across the boundaries of an iframe, using a
shared JavaScript object and relying on domain relaxation. In a nutshell (Fig-



ure 2), a JavaScript object is created by frame A and shared with a nested inter-
mediate iframe of the same domain (B). This intermediate iframe has a nested
frame belonging to the component (C), which needs to obtain the JavaScript
object to enable interaction. This is achieved by having both frames B and C
relax their domain, so the JavaScript object can be shared. Interaction is now
possible using the shared JavaScript object. More complex scenarios, involving
multiple components and origins, are also supported.

comp.integrator.com

www.integrator.com

www.integrator.com A

B

C integrator.com

integrator.com

www.integrator.com A

B

C

Figure 2. Subspace: initial setup (left) and after domain relaxation (right) (Source: [19]).

Subspace effectively enables interaction between frames, even with the re-
strictions imposed by the SOP. albeit with a few disadvantages. Apart from the
fairly expensive setup phase, the burden of subdomain management for each
component is another disadvantage of Subspace.

The security requirements for separation are addressed by the use of iframes.
As for the security requirements regarding interaction, Subspace achieves con-
fidentiality and integrity, as long as the shared objects are protected. Mutual
authentication is inherent to the owners of the shared object, which are deter-
mined during the setup phase.

3.2 Fragment Identifier Messaging

Fragment Identifier Messaging (FIM) [3], also known as Iframe Cross-Domain
Communication [10,31], builds a communication channel based on frame navi-
gation. If the URL of a frame is set, but only the fragment1 changes, the page is
not reloaded. This allows JavaScript within the page to read this fragment, thus
providing a one-way channel. Two-way interaction can be achieved using nested
frames.

Even though FIM enables interaction without violating the browser’s security
policies, it is not a designed interaction channel. This brings a few disadvantages,
such as a restricted message length, the lack of a notification system for new
messages or the fact that messages can easily be overwritten.

Compared to the proposed security requirements, FIM is dependent on the
use of iframes for separation. In terms of the security requirements for interac-
tion, FIM does achieve confidentiality, since the browser’s security policies pre-
vent the frame location to be read by other origins. Integrity is also preserved,

1 The part of a URL after the # symbol, used to navigate to an anchor within the
page.



since the frame’s location can only be overwritten as a whole, so no fragment can
be partially modified. Mutual authentication is not available, since the sender of
a message is not known, but an authentication mechanism can be implemented.

The issues with FIM can be addressed, as is shown by component framework
SMash [7], the OpenAjax Hub [28], OMOS [35] and the Microsoft API for using
FIM [31].

3.3 PostMessage

PostMessage is an extension of the browser API, providing a designed interaction
channel between frames [14]. The specification introduces a new DOM event,
message, which is fired if messages are received, as well as an API function
that can be used to send messages to a frame, postMessage(). When sending
a message, the destination origin has to be specified, which is validated by the
browser upon message delivery [3]. For received messages, the browser provides
the origin of the sender as part of the message object.

PostMessage is an improved version of FIM and addresses specific issues.
Similar to FIM, the separation requirements are met by the underlying use of
iframes. When compared to the security requirements for enabling interaction,
postMessage does achieve confidentiality and integrity. Mutual authentication is
also supported on the level of domains: the browser checks the destination when
sending a message and the receiver can check the origin of a message.

PostMessage is part of the HTML5 standard, which is currently still a draft
[13]. Nonetheless, postMessage is already supported by major browsers. It can
also be used to replace FIM, as will be done in SMash [7] and the OpenAjax
Hub [28].

3.4 Module tag

The module tag allows content separation in modules, which are only accessi-
ble through a message-passing interface for sending and receiving messages [5].
This message-passing interface is restricted to the JSON format, to prevent se-
curity issues through the leaking of JavaScript objects. Additionally, the module
tag assigns a unique origin to each module, thus effectively enabling separation
between multiple components from the same origin.

Compared to the security requirements for separation and interaction, the
module tag effectively separates components from each other. Separation is en-
forced within the same domain, both for scripts as DOM elements. As for in-
teraction between modules, confidentiality and integrity are achieved by the
separation of internal state. Mutual authentication is not achieved, since there
is no authentication of the sender, but can be implemented.

The module tag is not implemented by major browser vendors and is, as far
as we know, not used in practice. It does however provide valuable insights and
inspiration for the design of other standardized solutions, such as the sandbox
attribute, discussed next.



3.5 Sandbox attribute

The sandbox attribute [15] is an extension of the iframe tag and augments the
origin-based separation of iframes. The sandbox attribute imposes a set of re-
strictions, such as assigning a unique origin to the content, preventing scripts or
browser plugins to run or preventing forms from being submitted. These restric-
tions, except for running plugins, can be relaxed by specifically allowing them
when specifying the attribute.

Within the separation category, the sandbox attribute achieves all three se-
curity requirements. The interaction requirements are achieved by the chosen in-
teraction technique. This can be any interaction technique available for iframes,
but the standardized postMessage is a favorite, with one caveat: if a component
is assigned a unique origin, the postMessage-origin is set to a globally unique
identifier for outgoing messages. This may be problematic to achieve mutual
authentication with sandboxed components.

The sandbox attribute is part of HTML5, which is currently a draft [13].
Major browsers are starting to support the sandbox attribute though, with
Chromium/Chrome taking the lead.

3.6 MashupOS

MashupOS [33] arguments the need for additional trust levels within a mashup.
Next to the “no trust” provided by iframes, known as isolated content, and “full
trust” provided by script inclusion, known as open content, they propose access-
controlled content, which provides separation with the possibility of message-
passing across domains, and unauthorized content, which can not assume any
privileges associated with a domain, such as authentication credentials or origins.

Technically, these levels of trust are achieved by introducing new HTML
tags. These tags do not only provide separation and interaction, but also enable
the separation of physical resources, which is out of scope here. MashupOS also
provides a way for modules to expose a specific API.

Mapping MashupOS to the proposed security requirements is not easy, be-
cause there are multiple levels of trust. Using the different levels of trust, Mashup-
OS is able to provide strong separation for both DOM elements and scripts. Sep-
aration within the same origin is dependent on the technique used (e.g. unautho-
rized content is not associated with a domain). As for interaction, confidentiality
and integrity can be ensured using the provided API specification mechanism,
but no support for mutual authentication is provided. This can however be im-
plemented on top of the provided interaction mechanism.

MashupOS is not implemented in a major browser, but the four trust lev-
els can be simulated using iframes and postMessage. MashupOS also serves a
valuable role in the research on mashups.

3.7 OMash

A totally different approach is taken by OMash [4], where web pages are repre-
sented as objects, which have public interfaces for interaction. Such an object



encapsulates the internal state of a web page, including associated resources such
as cookies or authentication credentials. By separating pages, using an object
representation, OMash eliminates the need for the SOP. Resource sharing is done
by passing the needed resources between objects, but only if they can be safely
shared (e.g. session cookies are shared when a link within a site is followed).

OMash satisfies the separation requirements, since DOM objects and scripts
belong to an object’s private data. Since all objects are separated, OMash also
supports separation within the same origin. Interaction is possible using the
exposed interfaces, which provide confidentiality and integrity. Mutual authen-
tication is not inherently present, but can be implemented using shared secrets.

OMash is not adopted by any major browser vendor, but is available as a
prototype implementation.

4 Script Isolation

Script isolation techniques leverage the interaction possibilities present in a script
environment, and try to introduce separation between different components.
The general approach is restricting JavaScript to a subset, which adheres to the
object-capability security model. This security model is based on the fact that
separated objects have no capabilities and can only achieve capabilities on an
object if they are handed a reference to that object. For example, if an object
in the language has no reference to the Image object, it can not construct new
images. By giving it a reference to the Image object, it obtains the capability to
create images.

The three techniques presented here, i.e. ADsafe, Facebook JavaScript and
Caja, follow this object-capability security model, thus achieving component sep-
aration, regardless of domain. Separation for DOM elements and built-in script
objects is achieved using subset restrictions and run-time control over specific op-
erations, such as DOM access. The isolated modules can interact using explicitly
shared objects, which offer confidentiality and integrity. Mutual authentication
can be implemented if desired.

4.1 ADsafe

The ADsafe subset [6] is aimed at putting guest code, such as advertisements, in a
web page, without suffering security consequences. This is achieved by restricting
scripts to a safe subset of JavaScript. Safe interaction with their environment,
such as the DOM tree, is possible using a provided ADSAFE object.

ADsafe is not an active protection mechanism, but is enforced using a static
code verification tool. This tool can determine whether a script adheres to the
ADsafe subset or not, but will not actively rewrite code. Next to preventing
access to the global object or well-known insecure language features, such as
eval or with, ADsafe also prohibits the use of this, since it has subtle properties
that can be used to obtain a reference to the global object.



In recent research on the security of JavaScript subsets, specific issues with
ADsafe have been discovered [23]. These issues are minor design oversights, which
do not break the fundamental model of the language. Continued formal verifi-
cation is needed to prove that the ADsafe language fully adheres to the object-
capability security model.

4.2 Facebook JavaScript

Facebook, the social networking site, supports an extension model based on
applications, which are developed by external parties. To ensure the safe in-
corporation, Facebook provides Facebook JavaScript (FBJS) [11], which is a
secure JavaSript subset. FBJS is an active protection mechanism, which ap-
plies a rewriting process to normal JavaScript. This rewriting process includes
rewriting variable and function names to a unique namespace, as well as defining
Facebook-specific DOM objects, which do not implement insecure features. Re-
mote communication is available through an Ajax object, which uses a server-side
proxy to retrieve cross-domain content. More importantly, this retrieved content
is rewritten to FBJS, to ensure continuous protection.

The major advantage of the approach taken by Facebook is the active pro-
tection mechanism, which allows the dynamic addition of content. This is par-
ticularly useful in mashup applications. The disadvantage however is that every
request needs to go through the Facebook servers, which might not be feasible
for each integrator.

Recent research on the security of JavaScript subsets has also identified issues
with FBJS [23]. These issues do not have an impact on the fundamental model
of the language, and can be further eliminated using strong formal models.

4.3 Caja

Caja [27], a safe JavaScript subset designed by Google, takes a similar approach
to FBJS. It analyzes JavaScript to detect subset violations and it rewrites the
code to create isolated modules, as well as to mediate DOM access. Caja is a
fairly flexible subset, since it allows the use of this, albeit in a limited way. Caja
does more than subsetting JavaScript, it also introduces a new feature: frozen
objects. Frozen objects can not be changed, which makes them ideal for infor-
mation sharing between components. Objects in the default global environment
are automatically frozen.

An advantage of the way Caja is introduced is that it is aimed at supporting
existing scripts, with some exceptions such as eval or with. This allows a gradual
transition towards the Caja subset. Underneath, a second subset is defined,
named Cajita. Cajita can be considered “Caja without this”, since this is
considered a dangerous and unnecessary language feature. Cajita is meant to be
the subset for writing new applications, while Caja is meant to be backwards
compatible with current applications. Similar to FBJS, a server-side rewrite
process ensures continuous protection of dynamic code.



Recent research on the security of JavaScript subsets has been able to prove
that a subset based on Caja is capability safe [22]. This important result shows
that a JavaScript subset can adhere to an object-capability security model, and
can thus be used to achieve the proposed security requirements.

Caja is currently used by several OpenSocial gadget integrators, such as
Yahoo! Application Platform, Shindig, iGoogle, Code Wiki and Orkut.

5 Communication

In this section, we discuss several techniques to achieve cross-domain commu-
nication. These techniques are mostly workarounds, to enable communication
under the restrictions of the SOP. The last technique, i.e. cross-origin resource
sharing, is designed to extend the SOP to allow safe, controlled cross-domain
communication.

5.1 XMLHttpRequest Proxies

XHR does not allow cross-domain requests, a restriction that can be circum-
vented by providing a server-side proxy within the origin of the page initiating
the request. The proxy receives a request for some content, retrieves it and sends
it back to the requesting page. This solution is elegant in the sense that it allows
the client-side implementation to use XHR, the standardized communication
mechanism. The solution lacks elegance however in the fine details, such as the
difficulty in handling authentication credentials of the remote site, where the
information needs to be retrieved from. Another disadvantage is the fact that
every component provider needs to provide a proxy. Furthermore, this proxy
has to be fully trusted by the client, since it can manipulate both request and
response.

When compared against the proposed security requirements, this solution
does offer cross-domain communication, but offers no authentication. Even when
an authentication mechanism is implemented on top of this communication chan-
nel, the proxy effectively acts as a man in the middle, which makes the authen-
tication process untrustworthy.

This technique is currently used by Facebook JavaScript and iGoogle.

5.2 Script Communication

Scripts can be included from any origin, but their content is included in the
protection domain of the page that includes it. Furthermore, the page does not
get access to the contents of the received script file, which is executed imme-
diately. This does not prevent the use of script inclusion as a communication
channel: outgoing information is embedded using GET parameters and incoming
information is encoded as JavaScript code. This code can be anything, but will
most likely be JSON data.



This technique achieves cross-domain communication, but can not guarantee
any authentication. Depending on the degree of separation between the compo-
nents, an authentication mechanism may be implemented on top of this channel.
A major issue with this technique however is the fact that the response has full
privileges within the requesting page. This means that if an attacker can manip-
ulate the response, the whole requesting page is vulnerable to attack.

This technique is used in practice, for instance in Google’s mail service,
Gmail.

5.3 Using Browser Plugins

By interacting with browser plugins, such as Flash or Java, cross-domain com-
munication can be achieved. These plugins are not bound to the SOP of the
browser and are free to implement their own policy. The implemented policies
resemble the SOP of the browser, with some exceptions [34]. The origin to which
the plugin is bound is typically the origin where it was downloaded from, not
the origin of the including document. One noteworthy extension to the SOP of
the browser is that Flash and Java, among others, use a cross-domain policy file
(called crossdomain.xml) [1], which is used to selectively allow cross-domain re-
quests. This policy file is created and served by the destination of a cross-domain
request and identifies the origins where the request can come from. The plugin
checks this policy file before executing a cross-domain request.

The use of browser plugins enables cross-domain communication and of-
fers more fine-grained controls that other techniques do. Authentication can
be achieved using cookies or HTTP authentication headers, but the browser
plugin, which acts as a client-side proxy component, is still responsible for iden-
tifying the component behind the request. Disadvantageous to this technique is
the need for browser plugin support, which can have an impact on the security
of the browser platform, as shown by numerous vulnerabilities in both the Flash
and Java plugin environment. Additional disadvantages are the potential lack of
plugin support on mobile devices and the elevated resource consumption caused
by the loaded browser plugin objects.

This technique is currently in use by Facebook JavaScript.

5.4 Cross-Origin Resource Sharing

Cross-Origin Resource Sharing (CORS) is an extension of the HTTP protocol
to support cross-domain requests [32]. CORS allows a remote server to indicate
whether the given origin has access to its resources or not, a decision which
is enforced by the browser. The server can formulate fine-grained decisions for
particular resources, such as the HTTP methods that can be used or whether
credentials (cookies, HTTP authentication) are allowed.

Technically, CORS adds request headers to provide the server additional in-
formation, such as the origin or the need for credentials, to which the server
responds with response headers specifying the fine-grained decision that the
browser needs to enforce. The specification preserves the protection of legacy



operations, which have no knowledge about CORS, using a deny-by-default ap-
proach.

This solution is a durable, long-term approach to enabling cross-domain com-
munication. It even offers support for authentication, using cookies or HTTP au-
thentication. A disadvantage with the specification is the domain-based identifi-
cation of origins, which makes it hard for a remote server to distinguish requests
coming from two different components from within the same origin. As exper-
iments have shown, using CORS in conjunction with the unique origin of the
sandbox attribute leads to a null-origin being associated with the request. This
behavior can be attributed to the sandbox being a “privacy-sensitive” context
[2].

The CORS specification is still a W3C working draft, but is already supported
in major browsers. Since CORS only specifies an algorithm, browser vendors are
free to implement it how they see fit. Firefox and Chrome have extended the
traditional XHR communication mechanism with this additional functionality.
Internet Explorer has implemented it as the new XDomainRequest API, due to
previous security issues with the implementation of XHR [9].

6 Advanced Fine-Grained Control

In this section, we present three approaches which are aimed at providing fine-
grained control over component behavior in a mashup. The first approach fo-
cuses on enforcing a policy on JavaScript code, either with or without specific
browser-side support. A second approach mediates access to specific objects,
thus enabling the enforcement of a security policy. A third approach is aimed at
enabling information flow control for JavaScript.

6.1 Policy Enforcement Techniques for JavaScript

ConScript enables the specification and enforcement of fine-grained security poli-
cies for JavaScript in the browser [21]. Such policies can be used to control the
script behavior, such as disallowing calls to certain functions (e.g. eval), or pre-
venting the script from accessing cookies. To ease the task of writing policies,
ConScript supports automatic policy generation trough static analysis of server-
side code or run-time analysis of client-side code. Technically, ConScript supports
the enforcement of security advice within the JavaScript engine. The advantage
of this approach is its effectivity, since all indirections and ambiguities, such as
different paths to the same function, are eliminated inside the JavaScript engine.

Self-protecting JavaScript [29] provides similar security features, but does
not require specific support within the browser. Policy enforcement is achieved
by wrapping security-sensitive JavaScript operations before normal script exe-
cution. As a consequence of not depending on browser-support, this technique
faces several challenges, such as covering all access paths to a specific function
or preventing wrapped operations to be restored by the malicious script. Several
of these issues have been addressed in a follow-up paper [25], while others will
be resolved in future research.



6.2 Mediating Access to Objects

Object views offer a fine grained control over shared objects in a JavaScript
environment [26]. By creating and sharing a view of an object, instead of the
full object, all calls to the object pass through the view, where a security policy
can be enforced. An example application scenario is a document sharing policy,
where the HTML document is a shared object. A view of this document can
enforce the security policy, where a component can have read-only access to the
entire DOM tree, and only gets write access to within its boundaries.

AdJail [30] offers a technique to mediate access to advertisements, which
are embedded as a DOM object. Advertisements are executed separately in a
sandboxed environment, where they can cause no harm. In order to preserve the
user experience and to enable ad-specific services, such as compatibility with ad
network targeting algorithms or billing operations, a mediation technique selec-
tively forwards specific operations, such as visualizing content and forwarding of
user interface events, between the sandbox and hosting page.

6.3 Information Flow Control for JavaScript

Applying information flow control (IFC) to mashup components on the client-
side can prevent the leaking of sensitive data. A lattice-based approach to mashup
composition [24] prevents unauthorized leaking between origins. Authorized shar-
ing can be enabled by so-called escape hatches, which allow the declassification of
specific content items. Related work is Mash-IF [20], which presents a client-side
solution for enabling information flow control by means of a browser extension.
The extension supports the identification of sensitive data and uses a reference
monitor to prevent unauthorized disclosure within the mashup.

Additionally, secure multi-execution achieves non-interference between dif-
ferent levels in the security lattice, by executing a script for each security level,
which results in only a limited run-time overhead on multi-core client machines
[8].

7 Discussion

The overview in Figure 3 shows the compliance of the discussed solutions with
the security requirements for separation and interaction. The table also indi-
cates whether a technique is currently supported by mainstream browsers or
not. From this table – and the earlier discussion – it can be concluded that the
use of iframes combined with postMessage offers separation and interaction in a
standardized way, without much overhead. Stronger separation can be achieved
by using sandboxed iframes. For script separation within the same execution en-
vironment, Caja is most widely used and has the strongest formal background.
The techniques to enable communication have not been summarized in a table,
because there are too many differences between different techniques. The con-
clusion for this category is that the use of CORS is the recommended solution,
since it is a soon-to-be-standardized approach, with very limited overhead.



Separation Interaction

DOM Script Confidentiality Integrity

yes yes no N/A N/A N/A yes

script no no no no no no yes

yes yes no yes yes yes yes

yes yes yes yes yes yes yes

subspace yes yes no yes yes yes yes

smash yes yes no yes yes yes yes

module yes yes yes yes yes possible no

yes yes yes yes yes possible no

yes yes yes yes yes possible no

yes yes yes yes yes possible yes

yes yes yes yes yes possible yes

yes yes yes yes yes possible yes

Applicable in 
same domain

Mutual 
Authentication

Standardized/ 
Supported

iframe 

iframe + postmessage 

sandbox + postmessage 

mashupOS 

Omash 

Adsafe 

Facebook JavaScript 

Caja 

Figure 3. Overview: Separation/Isolation and Interaction. Note: mutual authentica-
tion is most of the time not available, but can be implemented (indicated by “possible”).

If we revisit the running example from the beginning of the paper, we can use
the following techniques to meet the security requirements: a client-side mashup
composes the application by separating the components using iframes (all dif-
ferent domains, so no need to use sandboxes). Interaction between banking an
brokerage component is enabled using postMessage, with access-control to en-
sure that the advertising component does not try to request private information.
Both banking an brokerage component also expose an API to retrieve relevant
keywords, which is publicly available, and can be used by the advertising compo-
nent. The banking and brokerage component can communicate with their servers
using traditional XHR. The advertising component can retrieve specific adver-
tisements using CORS, where the remote server allows requests coming from the
domain of the advertising component.

Opportunities for future work and developments for building secure mashups
are available both within the currently existing techniques as in the evolution
of mashups. One way currently existing techniques can be improved is by solv-
ing the remaining issues, such as the authentication problems with the use of
unique-origin sandboxes [2]. Another important improvement is the support for
web developers. The proposed security mechanisms, such as the postMessage
API and CORS specification serve their purpose, but expose too many low level
details to the developers. An abstraction on top of the postMessage API could
allow developers to define a public interface in some form of interface defini-
tion language, which is then translated to the corresponding, low level message
handler. Similarly, the CORS specification enables cross-domain communication,
but the header injection at the server-side needs to be encapsulated by frame-
works and management tools, to relieve the implementation and management
burden.

A growing mashup popularity will lead to changing requirements, especially
the need for fine-grained control techniques. The selective restrictions introduced
by the sandbox attribute are a step in the right direction, but more fine-grained



control will be needed in the future, an evolution started by the techniques pre-
sented in Section 6. Providing secure, fine-grained policy enforcement techniques
will enable developers and integrators to compose mashups, which respect speci-
fied policies. This is especially important for complex enterprise mashups, where
regulations, service level agreements or contracts may need to be respected.

Acknowledgements

This research is partially funded by the Interuniversity Attraction Poles Pro-
gramme Belgian State, Belgian Science Policy, IBBT, the Research Fund K.U.
Leuven and the EU-funded FP7-projects WebSand and NESSoS.

References

1. Adobe Systems Inc. Cross-domain policy file specification. http://www.adobe.

com/devnet/articles/crossdomain_policy_file_spec.html, January 2010.
2. A. Barth, C. Jackson, and I. Hickson. The web origin concept. http://tools.

ietf.org/html/draft-abarth-origin-07, June 2010.
3. A. Barth, C. Jackson, and J. C. Mitchell. Securing frame communication in

browsers. In In Proceedings of the 17th USENIX Security Symposium (USENIX
Security 2008), 2008.

4. S. Crites, F. Hsu, and H. Chen. Omash: Enabling secure web mashups via ob-
ject abstractions. In Proceedings of the 15th ACM conference on Computer and
communications security, pages 99–108. ACM, 2008.

5. D. Crockford. The module tag. http://www.json.org/module.html, October
2006.

6. D. Crockford. Adsafe. http://www.adsafe.org/, December 2009.
7. F. De Keukelaere, S. Bhola, M. Steiner, S. Chari, and S. Yoshihama. Smash:

Secure component model for cross-domain mashups on unmodified browsers. In
Proceedings of the 17th international conference on World Wide Web, pages 535–
544. ACM, 2008.

8. D. Devriese and F. Piessens. Non-interference through secure multi-execution. In
2010 IEEE Symposium on Security and Privacy Proceedings, pages 109–124, 2010.

9. S. Dutta. Client-side cross-domain security. http://msdn.microsoft.com/

library/cc709423.aspx, June 2008.
10. Facebook Developer Wiki. Cross domain communication. http://

wiki.developers.facebook.com/index.php/Cross_Domain_Communication, Jan-
uary 2009.

11. Facebook Developer Wiki. FBJS. http://wiki.developers.facebook.com/

index.php/FBJS, August 2010.
12. Harmonia, Inc. Liquidapps. http://www.liquidappsworld.com/, 2010.
13. I. Hickson and D. Hyatt. Html 5 working draft. http://www.w3.org/TR/html5/,

June 2010.
14. I. Hickson and D. Hyatt. Html 5 working draft - cross-document messaging. http:

//www.w3.org/TR/html5/comms.html#crossDocumentMessages, June 2010.
15. I. Hickson and D. Hyatt. Html 5 working draft - the sandbox attribute. http://

www.w3.org/TR/html5/the-iframe-element.html#attr-iframe-sandbox, June
2010.



16. IBM. IBM Mashup Center. http://www-01.ibm.com/software/info/

mashup-center/, 2010.
17. Intel Corporation. Mash Maker. http://mashmaker.intel.com/web/, 2010.
18. JackBe Corporation. Presto: Powering the enterprise app store. http://www.

jackbe.com/products/, 2010.
19. C. Jackson and H. J. Wang. Subspace: secure cross-domain communication for

web mashups. In Proceedings of the 16th international conference on World Wide
Web, page 620, 2007.

20. Z. Li, K. Zhang, and X. F. Wang. Mash-if: Practical information-flow control
within client-side mashups. In Dependable Systems and Networks (DSN), 2010
IEEE/IFIP International Conference on, pages 251–260, 2010.

21. B. Livshits and L. Meyerovich. Conscript: Specifying and enforcing fine-grained
security policies for javascript in the browser. Technical report, Microsoft Research,
2009.

22. S. Maffeis, J. C. Mitchell, and A. Taly. Object capabilities and isolation of un-
trusted web applications. In Proceedings of IEEE Security and Privacy’10. IEEE,
2010.

23. S. Maffeis and A. Taly. Language-based isolation of untrusted javascript. In 22nd
IEEE Computer Security Foundations Symposium, pages 77–91, 2009.

24. J. Magazinius, A. Askarov, and A. Sabelfeld. A lattice-based approach to mashup
security. In Proceedings of the 5th ACM Symposium on Information, Computer
and Communications Security, pages 15–23, 2010.

25. J. Magazinius, P. Phung, and D. Sands. Safe wrappers and sane policies for self
protecting javascript. In 15th Nordic Conference on Secure IT Systems, 2010.

26. L. A. Meyerovich, A. P. Felt, and M. S. Miller. Object views: Fine-grained sharing
in browsers. In Proceedings of the 19th international conference on World wide
web, pages 721–730, 2010.

27. M. S. Miller, M. Samuel, B. Laurie, I. Awad, and M. Stay. Caja: Safe ac-
tive content in sanitized javascript. http://google-caja.googlecode.com/files/
caja-spec-2008-01-15.pdf, January 2008.

28. OpenAjax Alliance. Openajax hub 2.0 specification. http://www.openajax.org/

member/wiki/index.php?title=OpenAjax_Hub_2.0_Specification\&oldid=

12174, July 2009.
29. P. H. Phung, D. Sands, and A. Chudnov. Lightweight self-protecting javascript. In

Proceedings of the 4th International Symposium on Information, Computer, and
Communications Security, pages 47–60, 2009.

30. M. Ter Louw, K. T. Ganesh, and V. N. Venkatakrishnan. Adjail: Practical en-
forcement of confidentiality and integrity policies on web advertisements. In 19th
USENIX Security Symposium, 2010.

31. D. Thorpe. Secure cross-domain communication in the browser. http://msdn.

microsoft.com/en-us/library/bb735305.aspx, July 2007.
32. A. van Kesteren. Cross-origin resource sharing, 2009.
33. H. J. Wang, X. Fan, J. Howell, and C. Jackson. Protection and communication

abstractions for web browsers in mashupos. ACM SIGOPS Operating Systems
Review, 41(6):16, 2007.

34. M. Zalewski. Browser security handbook. http://code.google.com/p/

browsersec/wiki/Main, 2010.
35. S. Zarandioon, D. D. Yao, and V. Ganapathy. Omos: A framework for secure

communication in mashup applications. In Computer Security Applications Con-
ference, 2008. ACSAC 2008. Annual, pages 355–364, 2008.


