
Copyright© 2011 KRvW Associates, LLC

Developing Secure Mobile Apps
SecAppDev 2011

Apple iOS (Xcode) edition

Copyright© 2011 KRvW Associates, LLC

Platform Architecture
What the iOS / hardware platform
offers us in the way of protection

Copyright© 2011 KRvW Associates, LLC

iOS application architecture

The iOS platform is
basically a subset of a
regular Mac OS X
system’s
–From user level (Cocoa)

down through Darwin
kernel

–Apps can reach down as
they choose to

–Only published APIs are
permitted, however

3

Copyright© 2011 KRvW Associates, LLC

Key security features

Application sandboxing
App store protection
Hardware encryption
Keychains
SSL and certificates

4

Copyright© 2011 KRvW Associates, LLC

Application sandboxing

By policy, apps are only
permitted to access
resources in their sandbox
–Inter-app comms are by

established APIs only
URLs, keychains (limited)

–File i/o in ~/Documents
only

Sounds pretty good, eh?

5

Copyright© 2011 KRvW Associates, LLC

App store protection

Access is via digital
signatures
– Only registered developers

may introduce apps to store
– Only signed apps may be

installed on devices
Sounds good also, right?
– But then there’s

jailbreaking...
– Easy and free
– Completely bypasses sigs

6

Copyright© 2011 KRvW Associates, LLC

Hardware encryption

Each iOS device (as of
3g) has hardware crypto
module
–Unique AES-256 key for

every iOS device
–Sensitive data hardware

encrypted
Sounds brilliant, right?
–Well...

7

Copyright© 2011 KRvW Associates, LLC

Keychains

Keychain API provided
for storage of small
amounts of sensitive data
–Login credentials,

passwords, etc.
–Encrypted using hardware

AES
Also sounds wonderful
–Wait for it...

8

Copyright© 2011 KRvW Associates, LLC

SSL and x.509 certificate handling

API provided for SSL and
certificate verification
–Basic client to server SSL is

easy
–Mutual verification of

certificates is achievable,
but API is complex

Overall, pretty solid
–Whew!

9

Copyright© 2011 KRvW Associates, LLC

And a few glitches...

Keyboard data
Screen snapshots
Hardware encryption is
flawed

10

Copyright© 2011 KRvW Associates, LLC

Keyboard data

All “keystrokes” are
stored
–Used for auto-correct

feature
–Nice spell checker
Key data can be harvested
using forensics
procedures
–Passwords, credit cards...
–Needle in haystack?

11

Copyright© 2011 KRvW Associates, LLC

Screen snapshots

Devices routinely grab
screen snapshots and store
in JPG
–Used for minimizing app

animation
– It looks pretty
WHAT?!
–It’s a problem
–Requires local access to

device, but still...

12

Copyright© 2011 KRvW Associates, LLC

But the clincher

Hardware module protects
unique key via device PIN
–PIN can trivially be disabled
–Jailbreak software
No more protection...

13

Copyright© 2011 KRvW Associates, LLC

Discouraged?

If we build our apps using
these protections only,
we’ll have problems
– But consider risk
– What is your app’s “so

what?” factor?
– What data are you

protecting?
– From whom?
– Might be enough for some

purposes
14

Copyright© 2011 KRvW Associates, LLC

But for a serious enterprise...

The protections provided
are simply not adequate to
protect serious data
–Financial
–Privacy
–Credit cards
We need to further lock
down
–But how much is enough?

15

Copyright© 2011 KRvW Associates, LLC

Application Architecture
How do we build our apps securely?

Copyright© 2011 KRvW Associates, LLC

Common app types

Web app
Web-client hybrid
App
–Stand alone
–Client-server
–Networked
Decision time...

17

Copyright© 2011 KRvW Associates, LLC

Web applications

Don’t laugh--you really
can do a lot with them
–Dashcode is pretty slick
–Can give a very solid UI to

a web app
Pros and cons
–Data on server (mostly)
–No app store to go through
–Requires connectivity

18

Copyright© 2011 KRvW Associates, LLC

Web-client hybrid

Local app with web views
–Still use Dashcode on web

views
–Local resources available

via Javascript
Location services, etc

Best of both worlds?
–Powerful, dynamic
–Still requires connection

19

Copyright© 2011 KRvW Associates, LLC

iOS app -- client-server

Most common app for
enterprises
– Basically alternate web client

for many
– But with iOS UI on client

side
– Server manages access,

sessions, etc.
Watch out for local storage
– Avoid if possible
– Encrypt if not

20

Copyright© 2011 KRvW Associates, LLC

iOS app -- networked

Other network
architectures also
–Internet-only
–P2P apps
Not common for
enterprise purposes

21

Copyright© 2011 KRvW Associates, LLC

Common Security Mechanisms
Now let’s build security in

Copyright© 2011 KRvW Associates, LLC

Common mechanisms

Input validation
Output escaping
Authentication
Session handling
Protecting secrets
–At rest
– In transit
SQL connections

23

Copyright© 2011 KRvW Associates, LLC

Input validation

Positive vs negative
validation
–Dangerous until proven safe
–Don’t just block the bad
Consider the failures of
desktop anti-virus tools
–Signatures of known viruses

24

Copyright© 2011 KRvW Associates, LLC

Input validation architecture

We have several choices
–Some good, some bad
Positive validation is our
aim
Consider tiers of security
in an enterprise app
–Tier 1: block the bad
–Tier 2: block and log
–Tier 3: block, log, and take

evasive action to protect
25

Copyright© 2011 KRvW Associates, LLC

Input validation (in iOS)
// RFC 2822 email addres regex.
NSString *emailRegex =
 @"(?:[a-z0-9!#$%\\&'*+/=?\\^_`{|}~-]+(?:\\.[a-z0-9!#$%\\&'*+/=?\\^_`{|}"
 @"~-]+)*|\"(?:[\\x01-\\x08\\x0b\\x0c\\x0e-\\x1f\\x21\\x23-\\x5b\\x5d-\\"
 @"x7f]|\\\\[\\x01-\\x09\\x0b\\x0c\\x0e-\\x7f])*\")@(?:(?:[a-z0-9](?:[a-"
 @"z0-9-]*[a-z0-9])?\\.)+[a-z0-9](?:[a-z0-9-]*[a-z0-9])?|\\[(?:(?:25[0-5"
 @"]|2[0-4][0-9]|[01]?[0-9][0-9]?)\\.){3}(?:25[0-5]|2[0-4][0-9]|[01]?[0-"
 @"9][0-9]?|[a-z0-9-]*[a-z0-9]:(?:[\\x01-\\x08\\x0b\\x0c\\x0e-\\x1f\\x21"
 @"-\\x5a\\x53-\\x7f]|\\\\[\\x01-\\x09\\x0b\\x0c\\x0e-\\x7f])+)\\])";

// Create the predicate and evaluate.
NSPredicate *regExPredicate =
 [NSPredicate predicateWithFormat:@"SELF MATCHES %@", emailRegEx];
BOOL validEmail = [regExPredicate evaluateWithObject:emailAddress];

if (validEmail) {
 ...
} else {
 ...
}

26

Copyright© 2011 KRvW Associates, LLC

Input validation (server side Java)

protected final static String ALPHA_NUMERIC =
 “^[a-zA-Z0-9\s.\-]+$”;
// we only want case insensitive letters and numbers
public boolean validate(HttpServletRequest request, String
parameterName) {
boolean result = false;
Pattern pattern = null;
parameterValue = request.getParameter(parameterName);
if(parameterValue != null) {
 pattern = Pattern.compile(ALPHA_NUMERIC);
 result = pattern.matcher(parameterValue).matches();
 return result;
} else
{ // take alternate action }

27

Copyright© 2011 KRvW Associates, LLC

Output encoding

Principle is to ensure data
output does no harm in
output context
–Output escaping of control

chars
How do you drop a “<“ into an

XML file?

–Consider all the possible
output contexts

28

Copyright© 2011 KRvW Associates, LLC

Output encoding

This is normally server
side code
Intent is to take dangerous
data and output harmlessly
Especially want to block
Javascript (XSS)
In iOS, not as much
control, but
– Never point UIWebView to

untrusted content

29

Copyright© 2011 KRvW Associates, LLC

Output encoding (server side)

Context
<body> UNTRUSTED DATA HERE </body>
<div> UNTRUSTED DATA HERE </div>
 other normal HTML elements

String safe = ESAPI.encoder().encodeForHTML(request.getParameter
(“input”));

30

Copyright© 2011 KRvW Associates, LLC

Authentication

This next example is for
authenticating an app user
to a server securely
–Server takes POST request,

just like a web app

31

Copyright© 2011 KRvW Associates, LLC

Authentication (forms-style)
// Initialize the request with the YouTube/Google ClientLogin URL (SSL).
NSString youTubeAuthURL = @"https://www.google.com/accounts/ClientLogin";
NSMutableRequest *request =
 [NSMutableURLRequest requestWithURL:[NSURL URLWithString:youTubeAuthURL]];

[request setHTTPMethod:@"POST"];

// Build the request body (form submissions POST).
NSString *requestBody =
 [NSString stringWithFormat:@"Email=%@&Passwd=%@&service=youtube&source=%@",
 emailAddressField.text, passwordField.text, @"Test"];

[request setHTTPBody:[requestBody dataUsingEncoding:NSUTF8StringEncoding]];

// Submit the request.
[[NSURLConnection alloc] initWithRequest:request delegate:self];

// Implement the NSURLConnection delegate methods to handle response.
...

32

Copyright© 2011 KRvW Associates, LLC

Mutual authentication

We may also want to use
x.509 certificates and
SSL to do strong mutual
authentication
More complicated, but
stronger
Certificate framework in
NSURL is complex and
tough to use
(Example is long--see src)

33

Copyright© 2011 KRvW Associates, LLC

Authentication (mutual)
/ Delegate method for NSURLConnection that determines whether client can handle
// the requested form of authentication.
- (BOOL)connection:(NSURLConnection *)connection
 canAuthenticateAgainstProtectionSpace:(NSURLProtectionSpace *)protectionSpace {

 // Only handle mutual auth for the purpose of this example.
 if ([[protectionSpace authenticationMethod] isEqual:NSURLAuthenticationMethodClientCertificate]) {
 return YES;
 } else {
 return NO;
 }
}

// Delegate method for NSURLConnection that presents the authentication
// credentials to the server.
- (void)connection:(NSURLConnection *)connection
 didReceiveAuthenticationChallenge:(NSURLAuthenticationChallenge *)challenge {

 id<NSURLAuthenticationChallengeSender> sender = [challenge sender];
 NSURLCredential *credential;
 NSMutableArray *certArray = [NSMutableArray array];

34

Copyright© 2011 KRvW Associates, LLC

Session handling

Normally controlled on
the server for client-server
apps
Varies tremendously from
one tech and app
container to another
Basic session rules apply
Testing does help, though

35

Copyright© 2011 KRvW Associates, LLC

Testing

Checklist
–Credentials encrypted in

transit?
–Username enumeration

or harvesting?
–Dictionary and brute

force attacks
–Bypassing
–Password remember and

reset

–Password geometry
–Logout and browser

caching
Dynamic validation is
very helpful

36

Copyright© 2011 KRvW Associates, LLC

Examples – HTTP 1
POST http://www.example.com/AuthenticationServlet HTTP/1.1
Host: www.example.com
User-Agent: Mozilla/5.0 (Windows; U; Windows NT 5.1; it; rv:1.8.1.14) Gecko/20100404
Accept: text/xml,application/xml,application/xhtml+xml
Accept-Language: it-it,it;q=0.8,en-us;q=0.5,en;q=0.3
Accept-Encoding: gzip,deflate
Accept-Charset: ISO-8859-1,utf-8;q=0.7,*;q=0.7
Keep-Alive: 300
Connection: keep-alive
Referer: http://www.example.com/index.jsp
Cookie:
JSESSIONID=LVrRRQQXgwyWpW7QMnS49vtW1yBdqn98CGlkP4jTvVCGdyPkmn3S
!
Content-Type: application/x-www-form-urlencoded
Content-length: 64

delegated_service=218&User=test&Pass=test&Submit=SUBMIT
37

Copyright© 2011 KRvW Associates, LLC

Examples – HTTP 2
POST https://www.example.com:443/login.do HTTP/1.1
Host: www.example.com
User-Agent: Mozilla/5.0 (Windows; U; Windows NT 5.1; it; rv:1.8.1.14) Gecko/
20100404
Accept: text/xml,application/xml,application/xhtml+xml,text/html
Accept-Language: it-it,it;q=0.8,en-us;q=0.5,en;q=0.3
Accept-Encoding: gzip,deflate
Accept-Charset: ISO-8859-1,utf-8;q=0.7,*;q=0.7
Keep-Alive: 300
Connection: keep-alive
Referer: https://www.example.com/home.do
Cookie: language=English;
Content-Type: application/x-www-form-urlencoded
Content-length: 50

Command=Login&User=test&Pass=test

38

Copyright© 2011 KRvW Associates, LLC

Examples – HTTP 3
POST https://www.example.com:443/login.do HTTP/1.1
Host: www.example.com
User-Agent: Mozilla/5.0 (Windows; U; Windows NT 5.1; it; rv:1.8.1.14) Gecko/20100404
Accept: text/xml,application/xml,application/xhtml+xml,text/html
Accept-Language: it-it,it;q=0.8,en-us;q=0.5,en;q=0.3
Accept-Encoding: gzip,deflate
Accept-Charset: ISO-8859-1,utf-8;q=0.7,*;q=0.7
Keep-Alive: 300
Connection: keep-alive
Referer: http://www.example.com/homepage.do
Cookie:
SERVTIMSESSIONID=s2JyLkvDJ9ZhX3yr5BJ3DFLkdphH0QNSJ3VQB6pLhjkW6F
Content-Type: application/x-www-form-urlencoded
Content-length: 45

User=test&Pass=test&portal=ExamplePortal

39

Copyright© 2011 KRvW Associates, LLC

Examples – HTTP 4

GET https://www.example.com/success.html?user=test&pass=test HTTP/
1.1
Host: www.example.com
User-Agent: Mozilla/5.0 (Windows; U; Windows NT 5.1; it; rv:1.8.1.14)
Gecko/20100404
Accept: text/xml,application/xml,application/xhtml+xml,text/html
Accept-Language: it-it,it;q=0.8,en-us;q=0.5,en;q=0.3
Accept-Encoding: gzip,deflate
Accept-Charset: ISO-8859-1,utf-8;q=0.7,*;q=0.7
Keep-Alive: 300
Connection: keep-alive
Referer: https://www.example.com/form.html
If-Modified-Since: Mon, 30 Jun 2010 07:55:11 GMT
If-None-Match: "43a01-5b-4868915f"

40

Copyright© 2011 KRvW Associates, LLC

Access control (authorization)

On the iOS device itself,
apps have access to
everything in their
sandbox
Server side must be
designed and built in like
any web app

41

Copyright© 2011 KRvW Associates, LLC

Authorization basics

Question every action
–Is the user allowed to

access this
File
Function
Data
Etc.

By role or by user
–Complexity issues
–Maintainability issues
–Creeping exceptions

42

Copyright© 2011 KRvW Associates, LLC

Role-based access control

Must be planned
carefully
Clear definitions of
–Users
–Objects
–Functions
–Roles
–Privileges

Plan for growth
Even when done well,
exceptions will happen

43

Copyright© 2011 KRvW Associates, LLC

ESAPI access control
In the presentation layer:

<% if (ESAPI.accessController().isAuthorizedForFunction(ADMIN_FUNCTION)) { %>
 ADMIN
 <% } else { %>
 NORMAL
 <% } %>

In the business logic layer:

try {
 ESAPI.accessController().assertAuthorizedForFunction(BUSINESS_FUNCTION);
 // execute BUSINESS_FUNCTION
 } catch (AccessControlException ace) {
 ... attack in progress
 }

44

Copyright© 2011 KRvW Associates, LLC

Protecting secrets at rest

The biggest problem by
far is key management
–How do you generate a

strong key?
–Where do you store the key?
–What happens if the user

loses his key?
Too strong and user
support may be an issue

45

Copyright© 2011 KRvW Associates, LLC

Built-in file protection (weak)

// API for writing to a file using writeToFile API

- (BOOL)writeToFile:(NSString *)path options:
(NSDataWritingOptions)mask error:(NSError **)
errorPtr

// To protect the file, include the
// NSDataWritingFileProtectionComplete option

46

Copyright© 2011 KRvW Associates, LLC

Protecting secrets at rest
(keychain)

// Write username/password combo to keychain.
BOOL writeSuccess = [SFHFKeychainUtils storeUsername:username
andPassword:password
 forServiceName:@"com.krvw.ios.KeychainStorage" updateExisting:YES
error:nil];
...

// Read password from keychain given username.
NSString *password = [SFHFKeychainUtils getPasswordForUsername:username
 andServiceName:@"com.krvw.ios.KeychainStorage" error:nil];
...

// Delete username/password combo from keychain.
BOOL deleteSuccess = [SFHFKeychainUtils deleteItemForUsername:username
 andServiceName:@"com.krvw.ios.KeychainStorage" error:nil];
...

47

Copyright© 2011 KRvW Associates, LLC

Enter SQLcipher

Open source extension to
SQLite
– Free
– Uses OpenSSL to AES-256

encrypt database
– Uses PBKDF2 for key

expansion
– Generally accepted crypto

standards
Available from
– http://sqlcipher.net

48

Copyright© 2011 KRvW Associates, LLC

Protecting secrets at rest
(SQLcipher)

sqlite3_stmt *compiledStmt;
// Unlock the database with the key (normally obtained via user input).
// This must be called before any other SQL operation.
sqlite3_exec(credentialsDB, "PRAGMA key = 'secretKey!'", NULL, NULL, NULL);
// Database now unlocked; perform normal SQLite queries/statments.
...
// Create creds database if it doesn't already exist.
const char *createStmt =
 "CREATE TABLE IF NOT EXISTS creds (id INTEGER PRIMARY KEY AUTOINCREMENT, username TEXT, password
TEXT)";
sqlite3_exec(credentialsDB, createStmt, NULL, NULL, NULL);
// Check to see if the user exists.
const char *queryStmt = "SELECT id FROM creds WHERE username=?";
int userID = -1;
if (sqlite3_prepare_v2(credentialsDB, queryStmt, -1, &compiledStmt, NULL) == SQLITE_OK) {
 sqlite3_bind_text(compiledStmt, 1, [username UTF8String], -1, SQLITE_TRANSIENT);
 while (sqlite3_step(compiledStmt) == SQLITE_ROW) {
 userID = sqlite3_column_int(compiledStmt, 0);
 }
}
if (userID >= 1) {
 // User exists in database.
 ...
}

49

Copyright© 2011 KRvW Associates, LLC

Protecting secrets in transit

Key management still
matters, but SSL largely
takes care of that
–Basic SSL is pretty easy in

NSURL
–Mutual certificates are

stronger, but far more
complicated

–NSURL is awkward, but it
works
See previous example

50

Copyright© 2011 KRvW Associates, LLC

Protecting secrets in transit
// Note the "https" protocol in the URL.
NSString *userJSONEndpoint =
 [[NSString alloc] initWithString:@"https://www.secure.com/api/user"];

// Initialize the request with the HTTPS URL.
NSMutableURLRequest *request =
 [MSMutableURLRequest requestWithURL:[NSURL URLWithString:userJSONEndpoint]];

// Set method (POST), relevant headers and body (jsonAsString assumed to be
// generated elsewhere).
[request setHTTPMethod:@"POST"];
[request setValue:@"application/json" forHTTPHeaderField:@"Content-Type"];
[request setValue:@"application/json" forHTTPHeaderField:@"Accept"];
[request setHTTPBody:[jsonAsString dataUsingEncoding:NSUTF8StringEncoding]];

// Submit the request.
[[NSURLConnection alloc] initWithRequest:request delegate:self];

// Implement delegate methods for NSURLConnection to handle request lifecycle.
...

51

Copyright© 2011 KRvW Associates, LLC

SQL connections

Biggest security problem
is using a mutable API
–Weak to SQL injection
Must use immutable API
–Similar to

PreparedStatement in Java
or C#

52

Copyright© 2011 KRvW Associates, LLC

SQL connections
// Update a users's stored credentials.
sqlite3_stmt *compiledStmt;
const char *updateStr = "UPDATE credentials SET username=?, password=? WHERE id=?";

// Prepare the compiled statement.
if (sqlite3_prepare_v2(database, updateStr, -1, &compiledStmt, NULL) == SQLITE_OK) {
 // Bind the username and password strings.
 sqlite3_bind_text(compiledStmt, 1, [username UTF8String], -1, SQLITE_TRANSIENT);
 sqlite3_bind_text(compiledStmt, 2, [password UTF8String], -1, SQLITE_TRANSIENT);

 // Bind the id integer.
 sqlite3_bind_int(compiledStmt, 3, userID);

 // Execute the update.
 if (sqlite3_step(compiledStmt) == SQLITE_DONE) {
 // Update successful.
 }
}

53

Copyright© 2011 KRvW Associates, LLC

Putting it together - design
patterns

Let’s dive into a few
patterns
–Class/whiteboard

discussions
–App scenarios

54

Copyright© 2011 KRvW Associates, LLC

Stand-alone

App contains some user
data
–Consumer grade

Recipes, wine cellar, etc.
–No networking
–All data local
–Location data perhaps
What should we do?
–What are the issues?

55

Copyright© 2011 KRvW Associates, LLC

Client-server social net app

Social network app
–The real data is on the

server side
–Authentication via app
–Presentation layer/view in

app
What are the issues?
–And the solutions?

56

Copyright© 2011 KRvW Associates, LLC

Client-server financial app

This one is used for
financial information and
transactions
–Stock trading site
–Mobile payments
How would we proceed?
–Issues and security

requirements?
–Special concerns?

57

Copyright© 2011 KRvW Associates, LLC

Client-server enterprise app

Internal enterprise app
–Used by employees for

some important enterprise
purpose
Supply chain, customer data,

sales, etc.
Company’s “crown jewels”

What are the issues?

58

Copyright© 2011 KRvW Associates, LLC

Kenneth R. van Wyk
KRvW Associates, LLC

Ken@KRvW.com
http://www.KRvW.com

