
1

Cryptography Best Practices

Prof. Bart Preneel
COSIC

Bart.Preneel(at)esatDOTkuleuven.be
http://homes.esat.kuleuven.be/~preneel

© Bart Preneel. All rights reserved

February 2011

2

Outline

•  1. Cryptology: concepts and algorithms
•  2. Cryptology: protocols
•  3. Public-Key Infrastructure principles
•  4. Networking protocols
•  5. New developments in cryptology
•  6. Cryptography best practices
•  7. Hash functions

3

Outline

•  Architecture
•  Network protocols
•  Security APIs
•  Key establishment: protocols, generation,

storage

4

Symmetric vs. Asymmetric Algorithms

•  hardware costs: 3K–
100K gates

•  performance: 100 Mbit/
s – 70 Gbit/s

•  keys: 64-256 bits
•  blocks: 64-128 bits
•  power consumption:

20-30 µJ/bit

•  hardware costs:
100K-1M gates

•  performance: 100 Kbit/
s – 10 Mbit/s

•  keys: 128-4096 bits
•  blocks: 128-4096 bits
•  power consumption:

1000-2000 µJ/bit

5

Architectures (1a)

•  Point to point
•  Local
•  Small scale

•  Number of keys: 1 or n2

•  Manual keying

Example:
ad hoc PAN or WLAN

6

Architectures (2a)
•  Centralized
•  Small or large scale
•  Manual keying

•  Number of keys: n
•  ! Central database: risk +

big brother
•  Non-repudiation of origin?

(physical assumptions)

Example: WLAN,
e-banking, GSM

7

Architectures (3a)
•  Centralized
•  Small or large scale
•  Manual keying

•  Number of keys: n + 1/
session

•  ! Central database: risk + big
brother

•  Non-repudiation of origin?
(physical assumptions)

Example: LAN
(Kerberos)

8

Architectures (4a)
•  Decentralized
•  Large scale

•  Number of keys: n + N2

•  Risks?
•  Trust
•  Hard to manage

Example:
network of LANs,

GSM

9

Architectures (5a)
•  Centralized
•  Large scale
•  Hierarchy

•  Number of keys: n + N

Example: credit
card and ATM

10

Architectures (1b)

•  Point to point
•  Worldwide
•  Small networks

•  No CA (e.g. PGP)

Example:
P2P, international

organizations

11

Architectures (2b)
•  Centralized
•  Large or small scale

•  Reduced risk
•  Non-repudiation of origin

Example: B2C
e-banking

12

Architectures (3b)
•  Centralized
•  Small or large scale

•  Reduced risk
•  Non-repudiation of origin

Example: B2B and
e-ID

13

Architectures (4b)
•  Decentralized
•  Large scale
•  (Open)

•  Key management
architecture?

•  Trust

Example: B2B,
GSM interoperator

communication

14

Architectures (5b)
•  Centralized
•  Large scale
•  Hierarchy

•  Open

Example: credit
card EMV

15

When asymmetric cryptology?
•  if manual secret key installation not feasible

(also in point-to-point)
•  open networks (no prior customer relation or

contract)
•  get rid of risk of central key store
•  mutually distrusting parties

–  strong non-repudiation of origin is needed
•  fancy properties: e-voting

Important lesson: on-line trust relationships should
reflect real-word trust relationships

16

EMV Static Data Authentication (SDA)

Acquirer

POS Device IC Card

CERTISS
(PISS
certified
with SCA)

Issuer
SISS

Public Key

PISS

Private
Key

SCA

Public Key

PCA

Private
Key

PCA

 IC

EPI

Static Card
data

17

EMV: dynamic data
authentication

◆  Three layers:

◆ EPI

◆  Issuers

◆ Cards
Issuer

Issuer
Issuer

Issuer

CA

Certificate for dynamic data
authentication of a credit card

 DN: cn=Jan Peeters,

 o=KBC, c=BE
 Serial #: 8391037
 Start: 3/12/11 1:00
 End: 4/12/13 12:01
 CRL: cn=RVC,
 o=EMV, c=BE
 Key:

CA DN: o=EMV, c=BE

Unique name owner

Unique serial number

Validity period

Revocation information

Public key

Name of issuing CA

CA’s Digital signature
on the
certificate

19

EMV Dynamic Data Authentication

Acquirer

POS Device IC Card

Issuer
SISS

Public Key

PISS

Private
Key

SCA

Public Key

PCA

Private
Key

PCA

 IC

EPI

SIC PIC

Private
Key

Public Key Static Card
data

CERTIC
(PIC
certified
with SISS)

Authenticate and Sign Transaction with SIC

20

Warning about EMV
http://www.cl.cam.ac.uk/research/security/banking/nopin/oakland10chipbroken.pdf

•  Pin checking and authentication are not coupled
•  EMV PIN verification “wedge” vulnerability

S.J. Murdoch, S. Drimer, R. Anderson, M. Bond,
IEEE Security & Privacy 2010

21

Network protocols

Application

Presentation

Session

Transport

Network

Data link

Physical

Application

Presentation

Session

Transport

Network

Data link

Physical

Network

Data link

Physical

Host Host

Router TLS/SSL
IPsec

S/MIME

PPTP, L2TP

22

Where to put security?

•  Application layer:
–  closer to user
–  more sophisticated/granular controls
–  end-to-end
–  but what about firewalls?

•  Lower layer:
–  application independent
–  hide traffic data
–  but vulnerable in middle points

•  Combine?

23

Where to put security? (2)

From: Bob@crypto.com
To: Alice@digicrime.com
Subject: Re: Can you meet me on Monday at

3pm to resolve the price issue?

This proposal is acceptable for me.
-- Bob

24

Security APIs
•  Security module controls access to and processing

of sensitive data
–  executes cryptographic commands, e.g. PIN checking,

encryption,…

Security
module

hardware or software
Host

Security API

I/O

network

25

Master key/data key
•  Load master 3DES key KM (tightly controlled)
•  Load data key: 3DESKM

(K1)|| 3DESKM(K2)|| 3DESKM(K3)
•  Send plaintext P and ask for encryption

DESK1(DES-1
K2(DESK3(P)))

DES P DES-1 DES

1 2 3

%^C&
@&^(

26

Master key/data key (2)
•  Load master 3DES key KM (tightly controlled)
•  Load corrupted data key:

DESKM(K1)|| DESKM(K1)|| DESKM(K1)
•  Send plaintext P and ask for encryption

DESK1(DES-1
K1(DESK1(P))) = DESK1(P)

DES P DES-1 DES

1 1 1

%^C&
@&^(

27

Control vectors in the IBM 4758 (1)

•  Potted in epoxy resin
•  Protective tamper-sensing membrane, chemically

identical to potting compound
•  Detectors for temperature & X-Rays
•  “Tempest” shielding for RF emission
•  Low pass filters on power supply rails
•  Multi-stage “latching” boot sequence
= STATE OF THE ART PROTECTION!

28

IBM 4758

29

Control vectors in the IBM 4758 (2)

•  Control vector: type (e.g., PIN, data, MAC)
 E Km + type (k), type

•  High security: triple control
–  Import Km as KmA + KmB + KmC

•  User C performs one correct and one
fraudulous import by entering the 2nd time
KmC + Δ with Δ = typeDATA + typePIN

•  Result: Km* = Km + Δ

30

Control vectors in the IBM 4758 (3)
Km: master key
Km* = Km + Δ = Km + typeDATA + typePIN
 or Km* + typeDATA = Km + typePIN
k = PIN encrypting key

Normally: D Km + typePIN (E Km + typePIN (k)) = k
But attack: D Km* + typeDATA (E Km + typePIN (k)) = k

The system now believes that k is a key to
decrypt data, which means that the result will
be output (PINs are never output in the clear)

31

Security APIs

•  Complex – 150 commands
•  Need to resist to insider frauds
•  Hard to design – can go wrong in many ways

•  See: Mike Bond, Cambridge University http://
www.cl.cam.ac.uk/users/mkb23/research.html

32

Key management

•  Key establishment protocols
•  Key generation
•  Key storage
•  Key separation (cf. Security APIs)

33

Key establishment protocols:
subtle flaws

•  Meet-in-the middle attack
– Lack of protected identifiers

•  Reflection attack
•  Triangle attack

34

Attack model:
Needham and Schroeder [1978]:

We assume that the intruder can interpose a
computer in all communication paths, and
thus can alter or copy parts of messages,
replay messages, or emit false material.
While this may seem an extreme view, it is
the only safe one when designing
authentication protocols.

35

Meet-in-the middle attack on Diffie-Hellman

•  Eve shares a key k1 with Alice and a key k2 with
Bob

•  Requires active attack

α x1

α y1

k1 =(α y1) x1 =(α x1)y1

α x2

α y2

k2 =(α y2) x2 =(α x2)y2

36

Entity authentication

•  Alice and Bob share a secret k

NA

Ek(NA||NB)

NB

37

Entity authentication: reflection attack
•  Eve does not know k and wants to

impersonate Bob

NA

NA

Ek(NA||NA’)

Ek(NA||NA’=NB)
NB

38

Needham-Schroeder (1978)

•  Alice and Bob have each other’s public key
PA and PB

EPB(NA||A)

EPA(NB||NA)

EPB(NB)

Derive a
session key k

from NA||
NB

39

Lowe’s attack on Needham-Schroeder (1995)

•  Alice thinks she is talking to Eve
•  Bob thinks he is talking to Alice

EPE(NA||A)

EPA(NB||NA)

EPE(NB)

EPB(NA||A)

EPA(NB||NA)

EPB(NB)

Eve

40

Lowe’s attack on Needham-Schroeder (1995)

•  Eve is a legitimate user = insider attack
•  Fix the problem by inserting B in message 2

EPB(NA||A)

EPA(NB||NA||B)

EPB(NB)

41

Lessons from Needham-Schroeder (1995)

•  Prudent engineering practice (Abadi &
Needham): include names of principals in all
messages

•  IKE v2 – plausible deniability: don’t include
name of correspondent in signed messages:
http://www.ietf.org/proceedings/02nov/I-D/
draft-ietf-ipsec-soi-features-01.txt

42

Rule #1 of protocol design

Don’t!

43

Why is protocol design so hard?

•  Understand the security properties offered by
existing protocols

•  Understand security requirements of novel
applications

•  Understanding implicit assumptions about the
environment underpinning established
properties and established security
mechanisms

44

And who are Alice and Bob anyway?

•  Users?
•  Smart cards/USB tokens of the users?
•  Computers?
•  Programs on a computer?

If Alice and Bob are humans, they
are vulnerable to social engineering

45

Random number generation
•  “The generation of random numbers is too

important to be left to chance”
•  John Von Neumann, 1951: "Anyone who considers

arithmetical methods of producing random digits is,
of course, in a state of sin”

•  Used for
– Key generation
– Encryption and digital signatures

(randomization)
– Protocols (nonce)

46

Key generation: overview

Hardware
entropy source

Software
entropy source

Entropy pool

State update

Initialization Internal state

extract
Generate

key

Monitoring

random bits

keys

47

Key generation: hardware entropy sources

•  radioactive decay
•  reverse biased diode
•  free running oscillators
•  radio
•  audio, video
•  hard disk access time (air turbulence)
•  manually (dice)
•  lava lamps

Risk: physical attacks, failure

48

Key generation: software entropy sources

•  system clock
•  elapsed time between keystrokes or mouse

movements
•  content of input/output buffers
•  user input
•  operating system values (system load,

network statistics)
•  interrupt timings

Risk: monitoring, predictable

49

Key generation: monitoring

•  Statistical tests (NIST FIPS 140)
•  typical tests: frequency test, poker test, run’s

test
•  necessary but not sufficient
•  5 lightweight tests to verify correct operation

continuously
•  stronger statistical testing necessary during

design phase, after production and before
installation

50

State update

•  Keep updating entropy pool and extracting
inputs from entropy pool to survive a state
compromise

•  Combine both entropy pool and existing state
with a non-invertible function (e.g.,
SHA-512, x2 mod n,…)

51

Output function

•  One-way function of the state since for some
applications the random numbers become
public

•  A random string is not the same as a random
integer mod p

•  A random integer/string is not the same as a
random prime

52

What not to do
•  use rand() provided by programming language or O/

S
•  restore entropy pool (seed file) from a backup and

start right away
•  use the list of random numbers from the RAND

Corporation
•  use numbers from http://www.random.org/

–  66198 million random bits served since October 1998
•  use digits from π, e, π/e,…
•  use linear congruential generators [Knuth]

–  xn+1 = a xn + b mod m

53

RSA moduli

•  Generate a 1024-bit RSA key
Use random bit generation to pick random a integer

r in the interval [2512,2513-1]
If r is even r:=r+1
Do r:=r+2 until r is prime; output p
Do r:=r+2 until r is prime; output q

What is the problem?

54

The Sony Play Station 3 Problem (1/2)

•  ElGamal-type signatures
•  public parameters: prime number p, generator g

(modulo p operation omitted below)
•  private key x, public key y = gx

•  signature (r,s)
–  Generate temporary private key k and public key r = gk

–  Solve s from h(m) ≡ x r + k s mod (p−1)
•  verification:

–  Signature verification: 1 < r < p and m ≡ yr rs mod p

55

The Sony Play Station Problem (2/2)
•  y = gx

•  signature:
–  r = gk

–  h(m) ≡ x r + k s mod (p−1)
•  what if k would be the same every time?

–  h(m1) ≡ x r + k s mod (p−1)
–  h(m2) ≡ x r + k s mod (p−1)

•  2 linear equations in 2 unknowns: easy to solve:
yields Sony’s root key x

•  can now do code signing
•  similar problems in the past with small deviation in

randomness of k (e.g. GNU GPG)

56

What to consider/look at
•  There are no widely used standardized random number

generators
•  Learn from open source examples: ssh, openpgp, linux kernel

source
•  /dev/random (slow)
•  Yarrow/Fortuna
•  ANSI X9.17 (but parameters are marginal)
•  Other references:

–  D. Wagner’s web resource: http://www.cs.berkeley.edu/~daw/rnd/
–  P. Gutmann, http://researchspace.auckland.ac.nz/handle/2292/2310
–  L. Dorrendorf, Z. Gutterman, Benny Pinkas, Cryptanalysis of the

Windows random number generator. ACM CCS 2007, pp. 476-485
–  Z. Gutterman, Benny Pinkas, T. Reinman, Analysis of the Linux

random number generator. IEEE Symposium on Security and Privacy
2006, pp. 371-385

57

How to store keys

•  Disk: only if encrypted under another key
–  But where to store this other key?

•  Human memory: passwords limited to 48-64 bits
and passphrases limited to 64-80 bits

•  Removable storage: Floppy, USB token, iButton,
PCMCIA card

•  Cryptographic co-processor: smart card USB token
•  Cryptographic co-processor with secure reader and

keypad
•  Hardware security module

58

Implementation attacks
cold boot attack

•  Why break cryptography? Go for the key, stupid!
•  Data reminence in DRAMs

 Lest We Remember: Cold Boot Attacks on Encryption Keys [Halderman-
Schoen-Heninger-Clarkson-Paul- Calandrino-Feldman- Appelbaum-
Felten’08]

–  Works for AES, RSA,…
–  Products: BitLocker, FileVault, TrueCrypt, dm-crypt, loop-AES

5 sec 30 sec 60 sec 5 min

59

New attack on keys in memory (21/02/08)

•  Key is stored in DRAM when machine is in
sleep or hibernation

•  Option 1: Reboot from a USB flash drive
with O/S and forensic tools (retaining the
memory image in DRAM), scan for the
encryption keys and extract them.

•  Option 2: physically remove the DRAM
– Cool DRAM using compressed-air canister (-50

C) or liquid nitrogen (-196 C)
•  Solution: hardware encryption or 2-factor

authentication

60

How to back-up keys
•  Backup is essential for decryption keys
•  Security of backup is crucial
•  Secret sharing: divide a secret over n users so

that any subset of t users can reconstruct it

Destroying keys securely is
harder than you think

$ 11,000

