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Outline 

•  1. Cryptology: concepts and algorithms 
•  2. Cryptology: protocols 
•  3. Public-Key Infrastructure principles 
•  4. Networking protocols 
•  5. New developments in cryptology 
•  6. Cryptography best practices 
•  7. Hash functions 
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Outline 

•  Architecture 
•  Network protocols 
•  Security APIs 
•  Key establishment: protocols, generation, 

storage  
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Symmetric vs. Asymmetric Algorithms 

•  hardware costs: 3K– 
100K gates 

•  performance: 100 Mbit/
s – 70 Gbit/s 

•  keys: 64-256 bits 
•  blocks: 64-128 bits 
•  power consumption: 

20-30 µJ/bit 

•  hardware costs: 
100K-1M gates 

•  performance: 100 Kbit/
s – 10 Mbit/s 

•  keys: 128-4096 bits 
•  blocks: 128-4096 bits 
•  power consumption: 

1000-2000 µJ/bit 
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Architectures (1a) 

•  Point to point 
•  Local  
•  Small scale 

•  Number of keys: 1 or  n2 

•  Manual keying 

Example:                   
ad hoc PAN or WLAN  
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Architectures (2a) 
•  Centralized 
•  Small or large scale 
•  Manual keying 

•  Number of keys: n 
•  ! Central database: risk + 

big brother 
•  Non-repudiation of origin? 

(physical assumptions) 

Example: WLAN, 
e-banking, GSM 
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Architectures (3a) 
•  Centralized 
•  Small or large scale 
•  Manual keying 

•  Number of keys: n + 1/
session 

•  ! Central database: risk + big 
brother 

•  Non-repudiation of origin? 
(physical assumptions) 

Example: LAN 
(Kerberos) 
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Architectures (4a) 
•  Decentralized 
•  Large scale 

•  Number of keys: n + N2 

•  Risks? 
•  Trust 
•  Hard to manage 

Example:     
network of LANs, 

GSM 
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Architectures (5a) 
•  Centralized 
•  Large scale 
•  Hierarchy 

•  Number of keys: n + N 

Example: credit 
card and ATM 
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Architectures (1b) 

•  Point to point 
•  Worldwide 
•  Small networks 

•  No CA (e.g. PGP) 

Example:                   
P2P, international 

organizations 
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Architectures (2b) 
•  Centralized 
•  Large or small scale 

•  Reduced risk 
•  Non-repudiation of origin 

Example: B2C       
e-banking 
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Architectures (3b) 
•  Centralized 
•  Small or large scale 

•  Reduced risk 
•  Non-repudiation of origin 

Example: B2B and 
e-ID 
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Architectures (4b) 
•  Decentralized 
•  Large scale 
•  (Open) 

•  Key management 
architecture? 

•  Trust 

Example: B2B, 
GSM interoperator 

communication 
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Architectures (5b) 
•  Centralized 
•  Large scale 
•  Hierarchy 

•  Open 

Example: credit 
card EMV 
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When asymmetric cryptology? 
•  if manual secret key installation not feasible 

(also in point-to-point) 
•  open networks (no prior customer relation or 

contract)  
•  get rid of risk of central key store 
•  mutually distrusting parties 

–  strong non-repudiation of origin is needed 
•  fancy properties: e-voting 

Important lesson: on-line trust relationships should 
reflect real-word trust relationships 
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EMV Static Data Authentication (SDA) 

Acquirer 

POS Device IC Card 

CERTISS 
(PISS 
certified 
with SCA) 

Issuer 
SISS 

Public Key 

PISS 

Private 
Key 

SCA 

Public Key 

PCA 

Private 
Key 

PCA 

 IC 

EPI 

Static Card 
data 
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EMV: dynamic data 
authentication 

◆  Three layers: 

◆ EPI  

◆  Issuers 

◆ Cards 
Issuer 

Issuer 
Issuer 

Issuer 

CA 



Certificate for dynamic data 
authentication of a credit card 

  DN: cn=Jan Peeters, 

  o=KBC, c=BE 
  Serial #: 8391037 
  Start: 3/12/11 1:00 
  End: 4/12/13 12:01 
  CRL:  cn=RVC,  
  o=EMV, c=BE 
  Key: 

CA DN: o=EMV, c=BE 

Unique name owner 

Unique serial number 

Validity period 

Revocation information 

Public key 

Name of issuing CA 

CA’s Digital signature  
on the 
certificate 
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EMV Dynamic Data Authentication 

Acquirer 

POS Device  IC Card 

Issuer 
SISS 

Public Key 

PISS 

Private 
Key 

SCA 

Public Key 

PCA 

Private 
Key 

PCA 

  IC 

EPI 

SIC PIC 

Private 
Key 

Public Key Static Card 
data 

CERTIC 
(PIC 
certified 
with SISS) 

Authenticate and Sign Transaction with SIC 
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Warning about EMV 
http://www.cl.cam.ac.uk/research/security/banking/nopin/oakland10chipbroken.pdf 

•  Pin checking and authentication are not coupled 
•  EMV PIN verification “wedge” vulnerability 

S.J. Murdoch, S. Drimer, R. Anderson, M. Bond, 
IEEE Security & Privacy 2010 
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Network protocols 

Application 

Presentation 

Session 

Transport 

Network 

Data link 

Physical 

Application 

Presentation 

Session 

Transport 

Network 

Data link 

Physical 

Network 

Data link 

Physical 

Host Host 

Router TLS/SSL 
IPsec 

S/MIME 

PPTP, L2TP 
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Where to put security? 

•  Application layer:  
–  closer to user 
–  more sophisticated/granular controls 
–  end-to-end 
–  but what about firewalls? 

•  Lower layer:  
–  application independent 
–  hide traffic data  
–  but vulnerable in middle points 

•  Combine? 
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Where to put security? (2) 

From: Bob@crypto.com 
To: Alice@digicrime.com 
Subject: Re: Can you meet me on Monday at 

3pm to resolve the price issue? 

This proposal is acceptable for me.  
-- Bob 
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Security APIs 
•  Security module controls access to and processing 

of sensitive data 
–  executes cryptographic commands, e.g. PIN checking, 

encryption,… 

Security 
module   

hardware or software 
Host 

Security API 

I/O 

network 
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Master key/data key 
•  Load master 3DES key KM (tightly controlled) 
•  Load data key:                                 3DESKM

(K1)|| 3DESKM(K2)|| 3DESKM(K3) 
•  Send plaintext P and ask for encryption           

DESK1(DES-1
K2( DESK3(P))) 

DES  P DES-1  DES  

1 2 3 

%^C&
@&^( 
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Master key/data key (2) 
•  Load master 3DES key KM (tightly controlled) 
•  Load corrupted data key:                                  

DESKM(K1)|| DESKM(K1)|| DESKM(K1) 
•  Send plaintext P and ask for encryption           

DESK1(DES-1
K1( DESK1(P))) = DESK1(P) 

DES  P DES-1  DES  

1 1 1 

%^C&
@&^( 
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Control vectors in the IBM 4758 (1) 

•  Potted in epoxy resin 
•  Protective tamper-sensing membrane, chemically 

identical to potting compound 
•  Detectors for temperature & X-Rays 
•  “Tempest” shielding for RF emission 
•  Low pass filters on power supply rails 
•  Multi-stage “latching” boot sequence 
= STATE OF THE ART PROTECTION! 
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IBM 4758 



29 

Control vectors in the IBM 4758 (2) 

•  Control vector: type  (e.g., PIN, data, MAC) 
    E Km + type (k), type 

•  High security: triple control 
–  Import  Km as KmA +  KmB +  KmC   

•  User C performs one correct and one 
fraudulous import by entering the 2nd time 
KmC  +  Δ with Δ = typeDATA + typePIN 

•  Result: Km* = Km  +  Δ  
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Control vectors in the IBM 4758 (3) 
Km: master key 
Km* = Km  +  Δ = Km + typeDATA + typePIN 
   or   Km* + typeDATA  = Km  +  typePIN  
k = PIN encrypting key 

Normally: D Km + typePIN (E Km + typePIN (k)) = k  
But attack: D Km* + typeDATA (E Km + typePIN (k)) = k  

The system now believes that k is a key to 
decrypt data, which means that the result will 
be output (PINs are never output in the clear) 
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Security APIs 

•  Complex – 150 commands 
•  Need to resist to insider frauds 
•  Hard to design – can go wrong in many ways 

•  See: Mike Bond, Cambridge University http://
www.cl.cam.ac.uk/users/mkb23/research.html 



32 

Key management 

•  Key establishment protocols 
•  Key generation 
•  Key storage 
•  Key separation (cf. Security APIs) 
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Key establishment protocols:         
subtle flaws 

•  Meet-in-the middle attack 
– Lack of protected identifiers 

•  Reflection attack 
•  Triangle attack 
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Attack model:                           
Needham and Schroeder [1978]: 

We assume that the intruder can interpose a 
computer in all communication paths, and 
thus can alter or copy parts of messages, 
replay messages, or emit false material. 
While this may seem an extreme view, it is 
the only safe one when designing 
authentication protocols. 
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Meet-in-the middle attack on Diffie-Hellman 

•  Eve shares a key k1 with Alice and a key k2 with 
Bob 

•  Requires active attack 

α x1 

α y1 

k1 =(α y1) x1 =(α x1)y1  

α x2 

α y2 

k2 =(α y2) x2 =(α x2)y2  
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Entity authentication 

•  Alice and Bob share a secret k 

NA 

Ek(NA||NB) 

NB 
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Entity authentication: reflection attack 
•  Eve does not know k and wants to 

impersonate Bob 

NA 

NA 

Ek(NA||NA’) 

Ek(NA||NA’=NB) 
NB 
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Needham-Schroeder (1978) 

•  Alice and Bob have each other’s public key 
PA and PB  

EPB(NA||A) 

EPA(NB||NA) 

EPB(NB) 

Derive a 
session key k 

from NA||
NB 
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Lowe’s attack on Needham-Schroeder (1995) 

•  Alice thinks she is talking to Eve 
•  Bob thinks he is talking to Alice 

EPE(NA||A) 

EPA(NB||NA) 

EPE(NB) 

EPB(NA||A) 

EPA(NB||NA) 

EPB(NB) 

Eve 
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Lowe’s attack on Needham-Schroeder (1995) 

•  Eve is a legitimate user = insider attack 
•  Fix the problem by inserting B in message 2 

EPB(NA||A) 

EPA(NB||NA||B) 

EPB(NB) 
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Lessons from Needham-Schroeder (1995) 

•  Prudent engineering practice (Abadi & 
Needham): include names of principals in all 
messages 

•  IKE v2 – plausible deniability: don’t include 
name of correspondent in signed messages: 
http://www.ietf.org/proceedings/02nov/I-D/
draft-ietf-ipsec-soi-features-01.txt 
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Rule #1 of protocol design 

Don’t! 
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Why is protocol design so hard? 

•  Understand the security properties offered by 
existing protocols 

•  Understand security requirements of novel 
applications 

•  Understanding implicit assumptions about the 
environment underpinning established 
properties and established security 
mechanisms 
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And who are Alice and Bob anyway? 

•  Users? 
•  Smart cards/USB tokens of the users? 
•  Computers? 
•  Programs on a computer? 

If Alice and Bob are humans, they 
are vulnerable to social engineering 
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Random number generation 
•  “The generation of random numbers is too 

important to be left to chance” 
•  John Von Neumann, 1951: "Anyone who considers 

arithmetical methods of producing random digits is, 
of course, in a state of sin” 

•  Used for  
– Key generation 
– Encryption and digital signatures 

(randomization) 
– Protocols (nonce) 
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Key generation: overview 

Hardware  
entropy source 

Software  
entropy source 

Entropy pool 

State update 

Initialization Internal state 

extract 
Generate 

key 

Monitoring 

random bits 

keys 
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Key generation: hardware entropy sources 

•  radioactive decay 
•  reverse biased diode 
•  free running oscillators 
•  radio 
•  audio, video 
•  hard disk access time (air turbulence) 
•  manually (dice) 
•  lava lamps 

Risk: physical attacks, failure 
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Key generation: software entropy sources 

•  system clock 
•  elapsed time between keystrokes or mouse 

movements 
•  content of input/output buffers 
•  user input 
•  operating system values (system load, 

network statistics) 
•  interrupt timings 

Risk: monitoring, predictable 
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Key generation: monitoring 

•  Statistical tests (NIST FIPS 140) 
•  typical tests: frequency test, poker test, run’s 

test 
•  necessary but not sufficient 
•  5 lightweight tests to verify correct operation 

continuously  
•  stronger statistical testing necessary during 

design phase, after production and before 
installation 
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State update 

•  Keep updating entropy pool and extracting 
inputs from entropy pool to survive a state 
compromise 

•  Combine both entropy pool and existing state 
with a non-invertible function (e.g., 
SHA-512, x2 mod n,…) 
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Output function 

•  One-way function of the state since for some 
applications the random numbers become 
public 

•  A random string is not the same as a random 
integer mod p 

•  A random integer/string is not the same as a 
random prime 
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What not to do 
•  use rand() provided by programming language or O/

S 
•  restore entropy pool (seed file) from a backup and 

start right away 
•  use the list of random numbers from the RAND 

Corporation 
•  use numbers from http://www.random.org/ 

–  66198 million random bits served since October 1998 
•  use digits from π, e, π/e,… 
•  use linear congruential generators [Knuth] 

–  xn+1 = a xn + b mod m 
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RSA moduli 

•  Generate a 1024-bit RSA key 
Use random bit generation to pick random a integer 

r in the interval [2512,2513-1] 
If r is even r:=r+1 
Do r:=r+2 until r is prime; output p 
Do r:=r+2 until r is prime; output q 

What is the problem? 
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The Sony Play Station 3 Problem (1/2) 

•  ElGamal-type signatures 
•  public parameters: prime number p, generator g 

(modulo p operation omitted below) 
•  private key x, public key y = gx 

•  signature (r,s) 
–  Generate temporary private key k and public key r = gk 

–  Solve s from h(m) ≡ x r  + k s mod (p−1) 
•  verification:  

–  Signature verification: 1 < r < p and m ≡ yr  rs mod p 
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The Sony Play Station Problem (2/2) 
•  y = gx 

•  signature:  
–  r = gk 

–  h(m) ≡ x r + k s mod (p−1) 
•  what if k would be the same every time? 

–   h(m1) ≡ x r + k s mod (p−1) 
–   h(m2) ≡ x r + k s mod (p−1) 

•  2 linear equations in 2 unknowns: easy to solve: 
yields Sony’s root key x 

•  can now do code signing  
•  similar problems in the past with small deviation in 

randomness of k (e.g. GNU GPG) 
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What to consider/look at 
•  There are no widely used standardized random number 

generators 
•  Learn from open source examples: ssh, openpgp, linux kernel 

source 
•  /dev/random (slow) 
•  Yarrow/Fortuna 
•  ANSI X9.17 (but parameters are marginal) 
•  Other references: 

–  D. Wagner’s web resource: http://www.cs.berkeley.edu/~daw/rnd/ 
–  P. Gutmann, http://researchspace.auckland.ac.nz/handle/2292/2310 
–  L. Dorrendorf, Z. Gutterman, Benny Pinkas, Cryptanalysis of the 

Windows random number generator. ACM CCS 2007, pp. 476-485 
–  Z. Gutterman, Benny Pinkas, T. Reinman, Analysis of the Linux 

random number generator. IEEE Symposium on Security and Privacy 
2006, pp. 371-385 
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How to store keys 

•  Disk: only if encrypted under another key 
–  But where to store this other key? 

•  Human memory: passwords limited to 48-64 bits 
and passphrases limited to 64-80 bits  

•  Removable storage: Floppy, USB token, iButton, 
PCMCIA card 

•  Cryptographic co-processor: smart card USB token 
•  Cryptographic co-processor with secure reader and 

keypad 
•  Hardware security module 
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Implementation attacks 
cold boot attack 

•  Why break cryptography? Go for the key, stupid! 
•  Data reminence in DRAMs 

    Lest We Remember: Cold Boot Attacks on Encryption Keys [Halderman-
Schoen-Heninger-Clarkson-Paul- Calandrino-Feldman- Appelbaum-
Felten’08] 

–  Works for AES, RSA,… 
–  Products: BitLocker, FileVault, TrueCrypt, dm-crypt, loop-AES 

5 sec 30 sec 60 sec 5 min 
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New attack on keys in memory (21/02/08) 

•  Key is stored in DRAM when machine is in 
sleep or hibernation 

•  Option 1: Reboot from a USB flash drive 
with O/S and forensic tools (retaining the 
memory image in DRAM), scan for the 
encryption keys and extract them. 

•  Option 2: physically remove the DRAM  
– Cool DRAM using compressed-air canister  (-50 

C) or liquid nitrogen (-196 C) 
•  Solution: hardware encryption or 2-factor 

authentication 
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How to back-up keys 
•  Backup is essential for decryption keys 
•  Security of backup is crucial 
•  Secret sharing: divide a secret over n users so 

that any subset of t users can reconstruct it 

Destroying keys securely is 
harder than you think 

$ 11,000 


