

Hardware Security Modules

SecAppDev 2010

Let's introduce myself...

Filip Demaertelaere

>>>> Head of Service Data Encryption Peripheral (DEP) <<<<

Head of End-to-End Security

T&P/ENG/DEP - T&P/ENG/ES - Atos Worldline SA/NV

filip.demaertelaere@atosorigin.com

Phone: +32 (0)2 727 61 67

GSM: +32 (0)495 59 69 05

Fax: + 32 (0)2 727 62 50

DEP Hotline: dep.hotline-atosworldline@atosorigin.com

Atos Worldline is an Atos Origin company: www.atosworldline.be Haachtsesteenweg 1442 Chaussée de Haecht- 1130 Brussels Belgium

Agenda (1)

- Cryptography: a short history
- > HSM
 - Definition
 - ➤ Why?
 - Form factors
 - Typical configuration
 - Tamper security
 - Logical security
 - Cryptography
 - Random generators
 - Performance ideas

Agenda (2)

- > HSM
 - Development challenges
 - Application areas
 - > Key management
 - Standard interfaces/APIs
 - Standards/certifications
 - > FIPS 140-2
 - Common Criteria
 - > PCI HSM
 - Manufacturers
- > Q&A

Cryptography - Short History (1)

- Classical Cryptography
 - > 3300 BC, Sumer: first writing system: Cuneiform script

1600 BC, Irak: the oldest cryptographical «document» ever found, a jar!

Cryptography - Short History (2)

- Classical Cryptography
 - ➤ 1000 BC, Greece: transposition ciphers (change order of characters) with the scytale (Plutarque'stick)

WE ARE DISCOVERED FLEE AT ONCE

W R I O R F E O E E E S V E L A N J A D C E D E T C X

> 600 BC, Hebrew: substitution ciphers (change characters)

WE ARE DISCOVERED FLEE AT ONCE

VA ZOA RFPBLUAOAR SIAA ZO LKBA

ABCDEFGHIJKLMNOPQRSTUVWXYZ ZEBRASCDFGHIJKLMNOPQTUVWXY

Cryptography - Short History (3)

- Classical Cryptography
 - > 100 BC, Caesar's ciphers

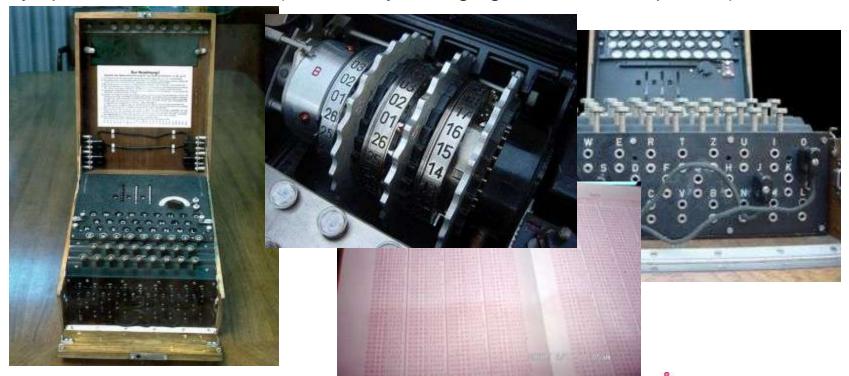
CTG FHUEOXGTF HNGG CV OPEG

$$E_n(x) = (x+n) \mod 26.$$

$$D_n(x) = (x - n) \mod 26.$$

Medieval, Substitution with multiple substitution alphabets

WEAREDISCOVEREDFLEEATONCE LEMONLEMONLEMONLEMON HIMFRO...



Cryptography - Short History (4)

> Enigma Cipher Machine, 1920, Arthur Scherbius (World War II):

Polyalphabetic substitution (continually changing substitution alphabet)

Cryptography and HSMs


What have we learned?

Cryptography uses SECRET keys

So we need something to protect these keys...

A Hardware Security Module

HSM – Definition (1)

- > HSM
 - Hardware Security Module
 - Host Security Module
- Definition
 - Black box combination hardware and software/firmware
 - Attached (or inside) a PC or server
 - Provides cryptographic functions
 - Physical/logical tamper protection (security)
 - (Increased performance)

HSM – Definition (2)

- Purpose
 - > (1) Secure generation (and entry)
 - (2) Secure storage (and backup)
 - > (3) Secure use (i.e. cryptographic algorithms)
 - Of cryptographic and sensitive data material
 - Note: HSM never allows plaintext key export!
- Other names
 - PCSM Personal Computer Security Module
 - SAM Secure Application Module
 - SCD Secure Cryptographic Device
 - SSCD Secure Signature Creation Device
 - > TRSM Tamper Resistant Security Module
 - Hardware Cryptographic Device, Cryptographic Module...

HSM - Why?

PERFORMANCE

SECURITY

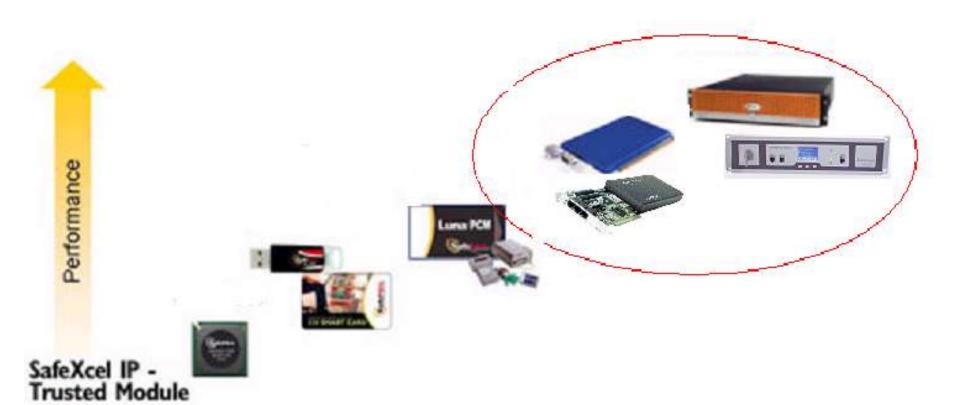
SECURITY

SECURITY

PERFORMANCE

SECURITY

SECURITY


PERFORMANCE

HSM – Form Factors

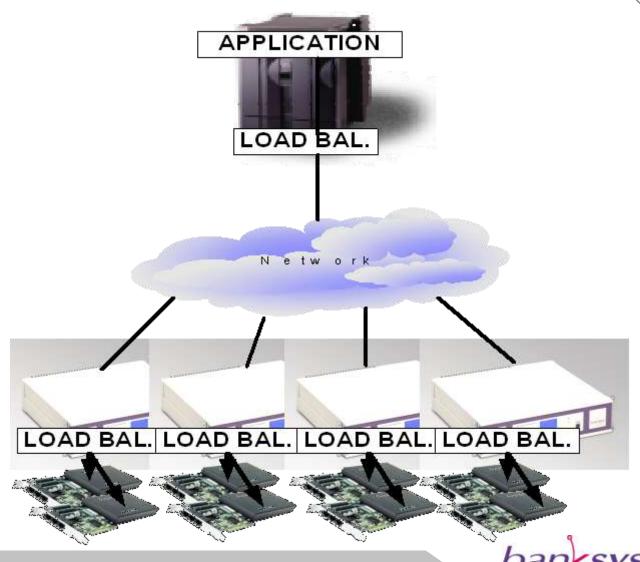
Silicon and Software IP Trusted Chips

Portable and Economical Offline Key Archive

Perfect for OEMs Networked, Scaleable

HSM – Definition

- > HSM
 - Hardware Security Module
 - Host Security Module
- Definition
 - Black box combination hardware and software/firmware
 - Attached (or inside) a PC or server
 - Provides cryptographic functions
 - Physical/logical tamper protection (security)
 - (Increased performance)



HSM – Typical Configuration (1)

HSM – Typical Configuration (2)

HSM – Communication Interface

- Internal:
 - > PCI Bridge (32 bit / 64 bit)
 - PCI Express
- > External:
 - Serial: type RS232
 - > Ethernet: from 10 Mbit to 1Gbit
 - > USB

HSM – Definition

- > HSM
 - Hardware Security Module
 - Host Security Module
- Definition
 - Black box combination hardware and software/firmware
 - Attached (or inside) a PC or server
 - Provides cryptographic functions
 - Physical/logical tamper protection (security)
 - (Increased performance)

HSM – Cryptography (1)

- Cryptography mostly accelerated by hardware accelerators (performance)
- Symmetric cryptography
 - > (T)DES, AES
 - Key generation/derivation
 - Encryption/decryption
 - Message Authentication Code
- Asymmetric cryptography
 - > RSA, ECC
 - Key generation
 - Data signing (optionally verification)
 - Data decryption

HSM – Cryptography (2)

- Hashing
 - > SHA-1, SHA-2, MD5
 - Mostly integrated in other cryptographic functions such as data signing
- > Random generator
 - True random generator (Undeterministic)
 - Pseudo random generator (Deterministic)

HSM – Random Generators (1)

- > True random generator
 - Undeterministic
 - Uses physical processes which are unpredictable, as far as known ("Noice"), e.g. mouse movements, keyboard input, ...
 - > (FIPS) outside human control
 - > FIPS 140-2: No approved true random number generator
- Pseudo random generator
 - Deterministic
 - Uses computational algorithms (e.g. cryptographic algorithms) that produce long sequences of apparently random results
 - Initiated by a short initial value ("Seed")
 - ➤ E.g. (FIPS 140-2) NIST Recommended Random Number Generator Based on ANSI X9.31 Appendix A.2.4 Using 3-Key Triple DES and AES Algorithms

HSM – Random Generators (2)

- Statistical tests
 - Define the quality of random numbers
- > Tests
 - > FIPS 140-2
 - Undeterministic: no approved
 - Deterministic: known-answer-tests (KAT)
 - Diehard measures quality of set of random numbers

HSM – Definition

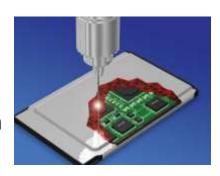
- > HSM
 - Hardware Security Module
 - Host Security Module
- Definition
 - Black box combination hardware and software/firmware
 - Attached (or inside) a PC or server
 - Provides cryptographic functions
 - Physical/logical tamper protection (security)
 - (Increased performance)

HSM – Tamper Security (1)

- E.g. tamper seals, tamper stickers
- Tamper Detection and Responsiveness
 - Automatic action by the protected object when a tamper has been detected (Tamper Detection) by the protected object itself
 - E.g. temperature sensors
- Tamper Resistance

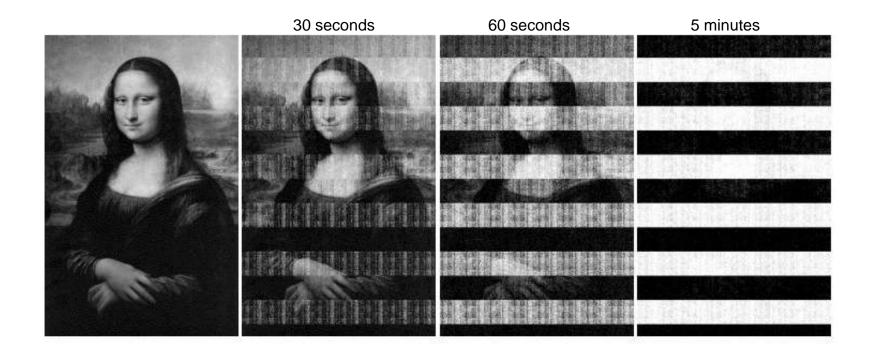
Resistance to tampering by normal users or others with physical access to the protected object

E.g. special screws



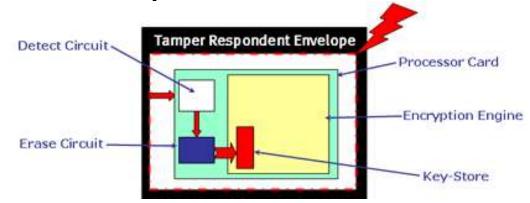
HSM – Tamper Security (2)

- Tamper security in HSM
 - Opaque epoxy
 - Wiring
 - Detection of mechanical penetration
 - Detection of chemical penetration
 - Temperature manipulation
 - Low: freezing (liquid nitrogen) memory attack
 - High: guarantee correct working
 - Battery manipulation
 - Power Supply (Voltage) variation
 - Movement
 - Light sensors



HSM – Tamper Security (3)

Data Remainance



HSM – Tamper Security (4)

- Zeroization
 - Definition: erase sensitive data and secret keys after Tamper Detection
 - Data remainance: residual representation of data that has been in some way nominated erased or removed
 - HSM requires active erasure of all memory containing sensitive data and secret keys
 - Fast!
 - Overwrite memory: zeroes, random or combination

HSM – Logical Security (1)

- Software/Firmware update: integrity and authentication
- > Access control: grant access to functions with
 - Count limit
 - > Time limit
 - ➢ No limit
- Real time clock: accuracy
- Communication: host authentication
- Logical HSM partitions
- Audit trails

HSM – Logical Security (2)

- Side Channel Attacks: attacks based on side channel information
 - Timing Attacks: based on measuring the time it takes for the HSM to perform an operation
 - Power Consumption Attacks: attacks based on analyzing the power consumption of the HSM during encryption operations
 - SPA (Single Power analysis): visual representation of the power consumption
 - DPA (Differential Power Analysis): statistical analysis of the power consumption
 - > Fault Analysis Attacks: investigate ciphers and extract keys by generating faults

HSM – Definition

- > HSM
 - Hardware Security Module
 - Host Security Module
- Definition
 - Black box combination hardware and software/firmware
 - Attached (or inside) a PC or server
 - Provides cryptographic functions
 - Physical/logical tamper protection (security)
 - (Increased performance)

HSM – Performance Ideas

- Almost no public information available
 - Internal versus external
 - Cryptographic module versus ethernet box
 - Asynchronous or synchronous
 - No raw cryptography
 - > Optimal situations
- RSA 1024 bit Private Key operation: 100 7000 operations/second
- > ECC 160 bit ECDSA signatures: 250 2500 operations/second
- > 3DES: 2 8 Mbytes/second
- > AES: 6 40 Mbytes/second (256 bit key)

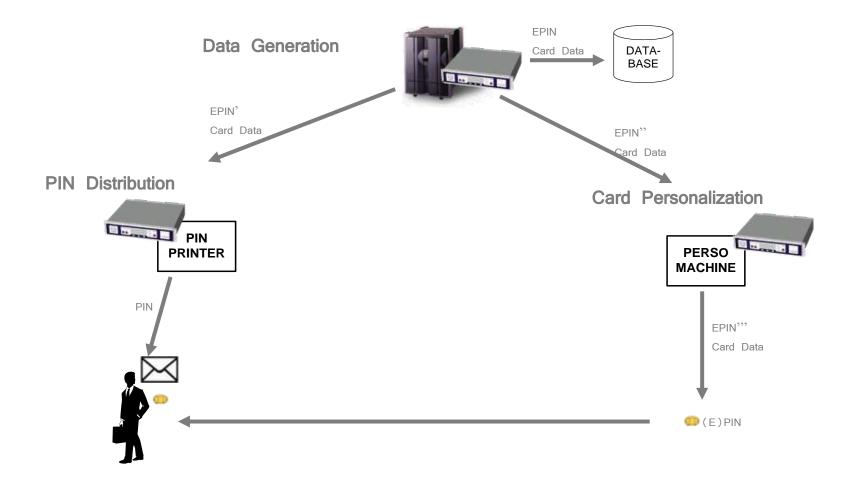
HSM – Development Challenges

- Physical Security versus Performance versus Power Dissipation
 - Hardware accelerators
 - Performant processors with low power consumption
 - Potting
- > Tamper Responsiveness
 - Intrusion Detection
 - Instant Zeroisation
- Separation of non-security and security parts
 - > Hardware separation: different processors, memories, ...
 - Logical separation: e.g. « sandboxing »
- > Side-Channel Attacks versus Performance versus Cryptographic algorithms
 - > Hardware (constant power supply) and logical protection
 - Logical protection impacts performance

HSM – Application Areas (1)

- PKI Environments
 - Certification Authority (CA) and Registration Authority (RA)
 - Generate, store and handle key pairs
- Card Payment Systems
 - Authentication and integrity checking of messages
 - Confidentiality (e.g. PIN)
 - On-line PIN verification
 - Checking card security codes
 - Re-encryption of PIN blocks
 - Card creation: PIN mailers, generation of magnetic stripe data, personalization of chip cards
 - E-commerce and M-commerce
 - Home banking

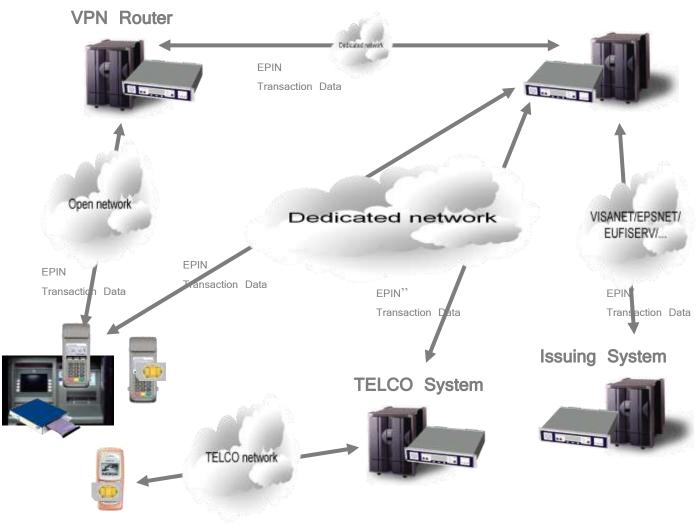
HSM – Application Areas (2)


- Others
 - Key Distribution Centers
 - > SSL connectivity
 - PayTV
 - Access control: one time passwords, user authentication
 - (Qualified) Digital signatures
 - Time-stamping
 - Trusted Platform Modules (TPM)
 - Document protection
 - Army

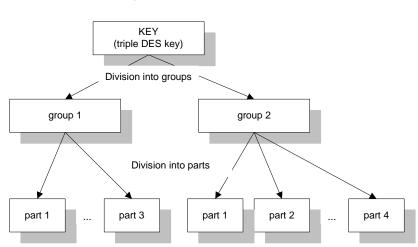
HSM – Application Areas: Card Production



HSM – Application Areas: Key Distribution



HSM – Application Areas: Card Payment



HSM – Key Management (1)

- ISO-11770: Information Technology Security Techniques Key Management
- Key generation (random generation!!):
 - Cleartext keys stored inside HSM protected memory («key storage»)
 - Special key properties:
 - (T)DES: weak/semi-weak keys and parity bits!
 - RSA: prime number generation, output Public Key
 - Output for key exchange:
 - Key components (XOR2/XOR3)
 - Secret sharing
 - Key cryptogram (transport key)
- (Manual) key entry
 - Key components (XOR2/XOR3)
 - Secret sharing
 - Key cryptogram (transport key)

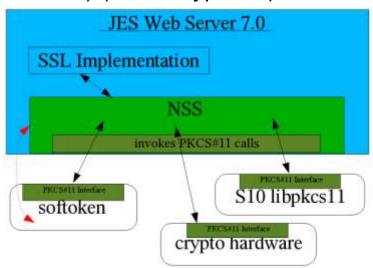
HSM – Key Management (2)

- Key storage/backup
 - Key space backup: backup of complete key space guaranteeing the confidentiality and integrity of the whole backup
 - Individual key storage: cryptograms with confidentiality & integrity protection

Date	Min. of Strength	Symmetric key algorithms	Asymmetric	Discrete Logarithm Key Group		Elliptic Curve	Hash (A)	Hash (B)
2009 to 2010	80	2TDEA*	1024	160	1024	160	SHA-1** SHA-224 SHA-256 SHA-384 SHA-512	SHA-1 SHA-224 SHA-256 SHA-384 SHA-512
2011 to 2030	112	3TDEA	2048	224	2048	224	SHA-224 SHA-256 SHA-384 SHA-512	SHA-1 SHA-224 SHA-256 SHA-384 SHA-512
> 2030	128	AES-128	3072	256	3072	256	SHA-256 SHA-384 SHA-512	SHA-1 SHA-224 SHA-256 SHA-384 SHA-512
>> 2030	192	AES-192	7680	384	7680	384	SHA-384 SHA-512	SHA-224 SHA-256 SHA-384 SHA-512
>>> 2030	256	AES-256	15360	512	15360	512	SHA-512	SHA-256 SHA-384 SHA-512

HSM – Key Management (3)

Key management devices: direct connection to cryptographic hardware (trusted path)

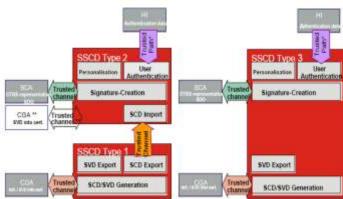


HSM – Standard Interfaces/API

- Standard API defining generic interfaces to cryptographic tokens (e.g. HSM)
- Goal: applications independent from HSMs
- Interfaces:
 - PKCS #11 (Public Key Cryptography Standards) (also «cryptoki»)
 - MSCAPI (Microsoft Cryptography API)
 - JCE (JAVA Cryptographic Engine)
- Examples of applications using PKCS#11:
 - Mozilla Firefox/Thunderbird
 - OpenSSL
 - OpenVPN
 - > ...

HSM – Prevent API Misuse: an example

- ➤ High Secure HSM: IBM4758
 - Hardware: FIPS 140-2 Level 4 Certified
 - Operating System: FIPS 140-2 Level 3 Certified
- > API
 - Common Cryptographic Architecture (CCA)
 - NOT validated during FIPS certification
- University of Cambridge: « Extracting a 3DES key from an IBM4758 »
 - Physical access to the HSM
 - Misuse sequence of API together with brute-force
- Simular problems with standard APIs



HSM – Standards / Certifications (1)

- ➤ ISO-13491-1:2007 Banking Secure Cryptographic Devices
 - Specifies Requirements for Secure Cryptographic Devices
 - Based on cryptographic processes defined in
 - ISO-9564: Banking Personal Identification Number
 - ISO-16609: Banking Requirements for Message Authentication
 - ISO-11568: Banking Key Management
- Protection Profile Secure Signature Creation Device
 - BSI-PP-0004-2002T 03.04.2002 Type1
 - BSI-PP-0005-2002T 03.04.2002 Type2
 - BSI-PP-0006-2002T 03.04.2002 Type3

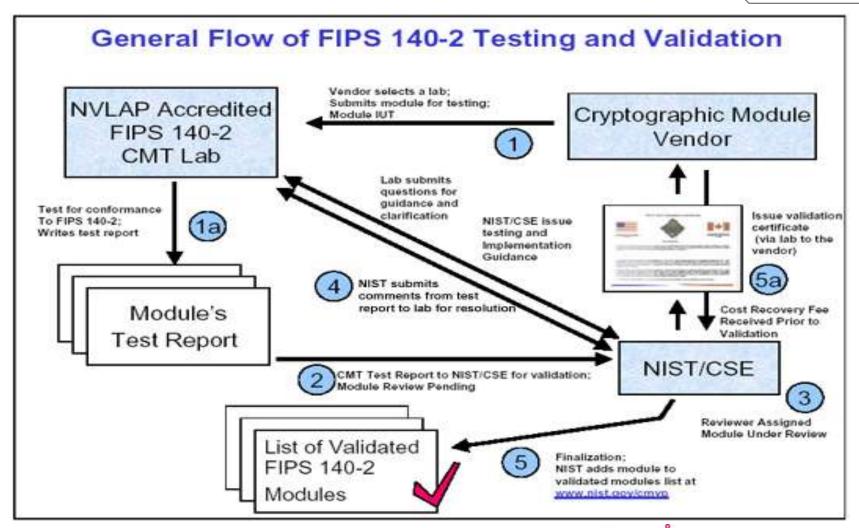
HSM – Standards / Certifications (2)

- Certifications:
 - > FIPS 140-2; FIPS 140-3 (draft)
 - Common Criteria (CC)
 - PCI HSM (draft) from PCI SSC (Payment Card Industry Security Standards Council)
 - ➤ Local certifications: MEPS, ZKA, ...

HSM - FIPS 140-2 (1)

- > FIPS
 - Federal Information Processing Standard
 - US government computer security standard
 - Used to accredit cryptographic modules
 - Issued by NIST (National Institute of Standards and Technology)
 - Cryptographic Module Validation Program (CMVP)
- Security levels
 - Level 1: no specific physical security mechanisms
 - Level 2: tamper evidence requirement
 - Level 3: high probability of detecting and responding to attempts of physical access
 - Level 4: complete envelop of protection with the indent of detecting and responding to all unauthorized attempts of physical access

HSM - FIPS 140-2 (2)


- > Requirement areas (11) for cryptographic modules
 - Specifications: what has to be documented
 - > Parts/interfaces: which in/out information flows and how it must be segregated
 - Roles, services and authentication: who can do what and how it is checked
 - Final state model: documentation of high level states and transitions
 - Physical security: tamper evidence/responsiveness/resistance
 - Operational environment: which operating system
 - Cryptographic key management: generation, entry, output, storage and destruction of keys
 - EMI/EMC (Electromagnetic Interference/Compatibility)
 - Self-tests: what must be tested and when; what when a test fails
 - Design assurance: information to be provided
 - Mitigation of other attacks: how it is done

HSM – FIPS 140-2 Certification Process

HSM – Common Criteria (1)

- > CC
 - Common Criteria for Information Technology Security Evaluation (evaluation methodology)
 - No security levels (FIPS), but Evaluation Assurance Levels (EAL1-EAL7)
 - National certification bodies with Common Criteria Recognition Agreement (CCRA)
 - Definition of security in Security Target (ST)

HSM – Common Criteria (2)

- > 7 Classes
 - ACM Configuration Management
 - ADO Delivery and Operation
 - > ADV Development
 - ADG Guidance documentation
 - > ACL Lifecycle support
 - > ATE Tests
 - AVA Vulnerability Analysis

HSM - PCI HSM

- > PCI SSC = VISA, MASTERCARD, JCB, AMEX, DISCOVERY
- Range of end-to-end security requirements: PCI PED, PCI UPT, PCI DSS, PCA PA DSS, PCI PIN and... PCI HSM
- > Still draft
- Based upon FIPS, including payment functionality
- Own certification scheme

HSM – Manufacturers (1)

Atos Worldline SA/NV

Safenet

> Bull

> IBM

HSM – Manufacturers (2)

Ncipher (now Thales)

Utimaco

> Thales

> ARX

Filip Demaertelaere

Head of Service Data Encryption Peripheral (DEP)

Head of End-to-End Security

T&P/ENG/DEP - T&P/ENG/ES - Atos Worldline SA/NV

filip.demaertelaere@atosorigin.com

Phone: +32 (0)2 727 61 67

GSM: +32 (0)495 59 69 05 Fax: + 32 (0)2 727 62 50

DEP Hotline: dep.hotline-atosworldline@atosorigin.com

Atos Worldline is an Atos Origin company: <u>www.atosworldline.be</u>
Haachtsesteenweg 1442 Chaussée de Haecht- 1130 Brussels Belgium

