Hardware Security Modules

F. Demaertelaere

SecAppDev 2010
Let’s introduce myself…

Filip Demaertelaere

>>>>> Head of Service Data Encryption Peripheral (DEP) <<<<<
Head of End-to-End Security
T&P/ENG/DEP - T&P/ENG/ES - Atos Worldline SA/NV
filip.demaertelaere@atosorigin.com
Phone: +32 (0)2 727 61 67
GSM: +32 (0)495 59 69 05
Fax: +32 (0)2 727 62 50
DEP Hotline: dep.hotline-atosworldline@atosorigin.com
Atos Worldline is an Atos Origin company: www.atosworldline.be
Haachtsesteenweg 1442 Chaussée de Haecht- 1130 Brussels Belgium
 Agenda (1)

- Cryptography: a short history
- HSM
 - Definition
 - Why?
 - Form factors
 - Typical configuration
 - Tamper security
 - Logical security
 - Cryptography
 - Random generators
 - Performance ideas
Agenda (2)

- HSM
 - Development challenges
 - Application areas
 - Key management
 - Standard interfaces/APIs
 - Standards/certifications
 - FIPS 140-2
 - Common Criteria
 - PCI HSM
 - Manufacturers

- Q&A
Cryptography - Short History (1)

- Classical Cryptography
 - 3300 BC, Sumer: first writing system: Cuneiform script

- 1600 BC, Iraq: the oldest cryptographical «document» ever found, a jar!
Cryptography - Short History (2)

- Classical Cryptography
 - 1000 BC, Greece: transposition ciphers (change order of characters) with the scytale (Plutarque’s stick)

 WE ARE DISCOVERED FLEE AT ONCE

 WRIOFEOE
 EESVELANJ
 ADCDETCX

- 600 BC, Hebrew: substitution ciphers (change characters)

 WE ARE DISCOVERED FLEE AT ONCE

 VAZOAFPBLUAOAR SIAA ZQ LKBA

 ABCDEFGHIJKLMNOPQRSTUVWXYZ
 ZEBRASCDFHIJKLMNOPQRSTUVWXYZ
Cryptography - Short History (3)

- Classical Cryptography
 - 100 BC, Caesar’s ciphers

 \[
 E_n(x) = (x + n) \mod 26. \\
 D_n(x) = (x - n) \mod 26. \\
 \]

- Medieval, Substitution with multiple substitution alphabets

 WE ARE DISCOVERED FLEE AT ONCE
 YG CTG FHUEQXGTF HNGG CV QPEG

 WEAREDISCOVEREDFLEEATONCE
 LEMONLEMONLEMONLEMONLEMON
 HIMFRO...
Cryptography - Short History (4)

- Enigma Cipher Machine, 1920, Arthur Scherbius (World War II):
 Polyalphabetic substitution (continually changing substitution alphabet)
Cryptography and HSMs

- What have we learned?
 - Cryptography uses SECRET keys

- So we need something to protect these keys…
 - A Hardware Security Module
HSM – Definition (1)

- HSM
 - Hardware Security Module
 - Host Security Module

- Definition
 - Black box combination hardware and software/firmware
 - Attached (or inside) a PC or server
 - Provides cryptographic functions
 - Physical/logical tamper protection (security)
 - (Increased performance)
HSM – Definition (2)

- **Purpose**
 - (1) Secure generation (and entry)
 - (2) Secure storage (and backup)
 - (3) Secure use (i.e. cryptographic algorithms)
 - Of cryptographic and sensitive data material
 - Note: HSM never allows plaintext key export!

- **Other names**
 - PCSM – Personal Computer Security Module
 - SAM – Secure Application Module
 - SCD – Secure Cryptographic Device
 - SSCD – Secure Signature Creation Device
 - TRSM – Tamper Resistant Security Module
 - Hardware Cryptographic Device, Cryptographic Module…
HSM – Why?

SECURITY

SECURITY

SECURITY

PERFORMANCE

SECURITY

PERFORMANCE

SECURITY

PERFORMANCE
HSM – Form Factors

- SafeXcel IP
- Trusted Module

- Silicon and Software IP
- Trusted Chips
- Portable and Economical
- Offline Key Archive
- Perfect for OEMs
- Networked, Scaleable
HSM – Definition

- HSM
 - Hardware Security Module
 - Host Security Module

- Definition
 - Black box combination hardware and software/firmware
 - Attached (or inside) a PC or server
 - Provides cryptographic functions
 - Physical/logical tamper protection (security)
 - (Increased performance)
HSM – Typical Configuration (1)
HSM – Typical Configuration (2)
HSM – Communication Interface

- Internal:
 - PCI Bridge (32 bit / 64 bit)
 - PCI Express

- External:
 - Serial: type RS232
 - Ethernet: from 10 Mbit to 1Gbit
 - USB
HSM – Definition

- **HSM**
 - Hardware Security Module
 - Host Security Module

- **Definition**
 - Black box combination hardware and software/firmware
 - Attached (or inside) a PC or server
 - **Provides cryptographic functions**
 - Physical/logical tamper protection (security)
 - (Increased performance)
Cryptography mostly accelerated by hardware accelerators (performance)

- Symmetric cryptography
 - (T)DES, AES
 - Key generation/derivation
 - Encryption/decryption
 - Message Authentication Code

- Asymmetric cryptography
 - RSA, ECC
 - Key generation
 - Data signing (optionally verification)
 - Data decryption
HSM – Cryptography (2)

- Hashing
 - SHA-1, SHA-2, MD5
 - Mostly integrated in other cryptographic functions such as data signing

- Random generator
 - True random generator (Undeterministic)
 - Pseudo random generator (Deterministic)
HSM – Random Generators (1)

- True random generator
 - Undeterministic
 - Uses physical processes which are unpredictable, as far as known ("Noice"), e.g. mouse movements, keyboard input, ...
 - (FIPS) outside human control
 - FIPS 140-2: No approved true random number generator

- Pseudo random generator
 - Deterministic
 - Uses computational algorithms (e.g. cryptographic algorithms) that produce long sequences of apparently random results
 - Initiated by a short initial value ("Seed")
 - E.g. (FIPS 140-2) NIST Recommended Random Number Generator Based on ANSI X9.31 Appendix A.2.4 Using 3-Key Triple DES and AES Algorithms
HSM – Random Generators (2)

- Statistical tests
 - Define the quality of random numbers

- Tests
 - FIPS 140-2
 - Undeterministic: no approved
 - Deterministic: known-answer-tests (KAT)
 - Diehard measures quality of set of random numbers
HSM – Definition

- **HSM**
 - Hardware Security Module
 - Host Security Module

- **Definition**
 - Black box combination hardware and software/firmware
 - Attached (or inside) a PC or server
 - Provides cryptographic functions
 - **Physical/logical tamper protection (security)**
 - (Increased performance)
HSM – Tamper Security (1)

- Tamper security terminology
 - Tamper Evidence
 - Unauthorised access to the protected object is easily detected
 - E.g. tamper seals, tamper stickers
 - Tamper Detection and Responsiveness
 - Automatic action by the protected object when a tamper has been detected (Tamper Detection) by the protected object itself
 - E.g. temperature sensors
 - Tamper Resistance
 - Resistance to tampering by normal users or others with physical access to the protected object
 - E.g. special screws
HSM – Tamper Security (2)

- Tamper security in HSM
 - Opaque epoxy
 - Wiring
 - Detection of mechanical penetration
 - Detection of chemical penetration
- Temperature manipulation
 - Low: freezing (liquid nitrogen) memory attack
 - High: guarantee correct working
- Battery manipulation
- Power Supply (Voltage) variation
- Movement
- Light sensors
HSM – Tamper Security (3)

- Data Remainance

<table>
<thead>
<tr>
<th>30 seconds</th>
<th>60 seconds</th>
<th>5 minutes</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Zeroization
- Definition: erase sensitive data and secret keys after Tamper Detection
- Data remainance: residual representation of data that has been in some way nominated erased or removed
- HSM requires active erasure of all memory containing sensitive data and secret keys
 - Fast!
 - Overwrite memory: zeroes, random or combination
HSM – Logical Security (1)

- Software/Firmware update: integrity and authentication
- Access control: grant access to functions with
 - Count limit
 - Time limit
 - No limit
- Real time clock: accuracy
- Communication: host authentication
- Logical HSM partitions
- Audit trails
Side Channel Attacks: attacks based on side channel information
- Timing Attacks: based on measuring the time it takes for the HSM to perform an operation
- Power Consumption Attacks: attacks based on analyzing the power consumption of the HSM during encryption operations
 - SPA (Single Power analysis): visual representation of the power consumption
 - DPA (Differential Power Analysis): statistical analysis of the power consumption
- Fault Analysis Attacks: investigate ciphers and extract keys by generating faults
HSM – Definition

- **HSM**
 - Hardware Security Module
 - Host Security Module

- **Definition**
 - Black box combination hardware and software/firmware
 - Attached (or inside) a PC or server
 - Provides cryptographic functions
 - Physical/logical tamper protection (security)
 - *(Increased performance)*
HSM – Performance Ideas

- Almost no public information available
 - Internal versus external
 - Cryptographic module versus ethernet box
 - Asynchronous or synchronous
 - No raw cryptography
 - Optimal situations

- RSA 1024 bit Private Key operation: 100 – 7000 operations/second
- ECC 160 bit ECDSA signatures: 250 – 2500 operations/second
- 3DES: 2 - 8 Mbytes/second
- AES: 6 - 40 Mbytes/second (256 bit key)
HSM – Development Challenges

- Physical Security versus Performance versus Power Dissipation
 - Hardware accelerators
 - Performant processors with low power consumption
 - Potting

- Tamper Responsiveness
 - Intrusion Detection
 - Instant Zeroisation

- Separation of non-security and security parts
 - Hardware separation: different processors, memories, …
 - Logical separation: e.g. « sandboxing »

- Side-Channel Attacks versus Performance versus Cryptographic algorithms
 - Hardware (constant power supply) and logical protection
 - Logical protection impacts performance
HSM – Application Areas (1)

- PKI Environments
 - Certification Authority (CA) and Registration Authority (RA)
 - Generate, store and handle key pairs

- Card Payment Systems
 - Authentication and integrity checking of messages
 - Confidentiality (e.g. PIN)
 - On-line PIN verification
 - Checking card security codes
 - Re-encryption of PIN blocks
 - Card creation: PIN mailers, generation of magnetic stripe data, personalization of chip cards
 - E-commerce and M-commerce
 - Home banking
HSM – Application Areas (2)

- Others
 - Key Distribution Centers
 - SSL connectivity
 - PayTV
 - Access control: one time passwords, user authentication
 - (Qualified) Digital signatures
 - Time-stamping
 - Trusted Platform Modules (TPM)
 - Document protection
 - Army
HSM – Application Areas: Card Production

Data Generation

PIN Distribution

Card Personalization

PIN PRINTER

PERSO MACHINE

EPIN Card Data

(E)PIN

An Atos Origin Company
HSM – Application Areas: Key Distribution

Key Generation

(derived) Keys

Acquiring System

(derived) Keys

An Atos Origin Company
HSM – Application Areas: Card Payment

VPN Router

Open network

EPIN Transaction Data

Dedicated network

EPIN Transaction Data

VINet/EPSNET/EUFISERV...

Issuing System

TELCO System

TELCO network

EPIN Transaction Data

EPIN Transaction Data

EPIN'' Transaction Data
HSM – Key Management (1)

- Key generation (random generation!!):
 - Cleartext keys stored inside HSM protected memory («key storage»)
 - Special key properties:
 - (T)DES: weak/semi-weak keys and parity bits!
 - RSA: prime number generation, output Public Key

- Output for key exchange:
 - Key components (XOR2/XOR3)
 - Secret sharing
 - Key cryptogram (transport key)

- (Manual) key entry
 - Key components (XOR2/XOR3)
 - Secret sharing
 - Key cryptogram (transport key)
HSM – Key Management (2)

- Key storage/backup
 - Key space backup: backup of complete key space guaranteeing the confidentiality and integrity of the whole backup
 - Individual key storage: cryptograms with confidentiality & integrity protection

<table>
<thead>
<tr>
<th>Date</th>
<th>Min. of Strength</th>
<th>Symmetric key algorithms</th>
<th>Asymmetric Key</th>
<th>Discrete Logarithm Group</th>
<th>Elliptic Curve</th>
<th>Hash (A)</th>
<th>Hash (B)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2009 to 2010</td>
<td>80</td>
<td>2TDEA^A</td>
<td>1024</td>
<td>160</td>
<td>1024</td>
<td>SHA-1**</td>
<td>SHA-1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>SHA-224</td>
<td>SHA-224</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>SHA-256</td>
<td>SHA-256</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>SHA-384</td>
<td>SHA-384</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>SHA-512</td>
<td>SHA-512</td>
</tr>
<tr>
<td>2011 to 2030</td>
<td>112</td>
<td>3TDEA</td>
<td>2048</td>
<td>224</td>
<td>2048</td>
<td>SHA-224</td>
<td>SHA-224</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>SHA-256</td>
<td>SHA-256</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>SHA-384</td>
<td>SHA-384</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>SHA-512</td>
<td>SHA-512</td>
</tr>
<tr>
<td>> 2030</td>
<td>128</td>
<td>AES-128</td>
<td>3072</td>
<td>256</td>
<td>3072</td>
<td>SHA-256</td>
<td>SHA-224</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>SHA-384</td>
<td>SHA-256</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>SHA-512</td>
<td>SHA-384</td>
</tr>
<tr>
<td>>> 2030</td>
<td>192</td>
<td>AES-102</td>
<td>7680</td>
<td>384</td>
<td>7680</td>
<td>SHA-384</td>
<td>SHA-224</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>SHA-384</td>
<td>SHA-256</td>
</tr>
<tr>
<td>>>> 2030</td>
<td>256</td>
<td>AES-256</td>
<td>15360</td>
<td>512</td>
<td>15360</td>
<td>SHA-384</td>
<td>SHA-256</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>SHA-512</td>
<td>SHA-384</td>
</tr>
</tbody>
</table>
HSM – Key Management (3)

- Key management devices: direct connection to cryptographic hardware (trusted path)
HSM – Standard Interfaces/API

- Standard API defining generic interfaces to cryptographic tokens (e.g. HSM)
- Goal: applications independent from HSMs
- Interfaces:
 - PKCS #11 (Public Key Cryptography Standards) (also «cryptoki»)
 - MSCAPI (Microsoft Cryptography API)
 - JCE (JAVA Cryptographic Engine)
- Examples of applications using PKCS#11:
 - Mozilla Firefox/Thunderbird
 - OpenSSL
 - OpenVPN
 - …
HSM – Prevent API Misuse: an example

- High Secure HSM: IBM4758
 - Hardware: FIPS 140-2 Level 4 Certified
 - Operating System: FIPS 140-2 Level 3 Certified

- API
 - Common Cryptographic Architecture (CCA)
 - NOT validated during FIPS certification

- University of Cambridge: « Extracting a 3DES key from an IBM4758 »
 - Physical access to the HSM
 - Misuse sequence of API together with brute-force

- Similar problems with standard APIs
HSM – Standards / Certifications (1)

- ISO-13491-1:2007 Banking – Secure Cryptographic Devices
 - Specifies Requirements for Secure Cryptographic Devices
 - Based on cryptographic processes defined in
 - ISO-9564: Banking – Personal Identification Number
 - ISO-16609: Banking – Requirements for Message Authentication
 - ISO-11568: Banking – Key Management

- Protection Profile – Secure Signature Creation Device
 - BSI-PP-0004-2002T 03.04.2002 – Type1
 - BSI-PP-0005-2002T 03.04.2002 – Type2
 - BSI-PP-0006-2002T 03.04.2002 – Type3
HSM – Standards / Certifications (2)

- Certifications:
 - FIPS 140-2; FIPS 140-3 (draft)
 - Common Criteria (CC)
 - PCI HSM (draft) from PCI SSC (Payment Card Industry Security Standards Council)
 - Local certifications: MEPS, ZKA, …
HSM – FIPS 140-2 (1)

- **FIPS**
 - Federal Information Processing Standard
 - US government computer security standard
 - Used to accredit cryptographic modules
 - Issued by NIST (National Institute of Standards and Technology)
 - Cryptographic Module Validation Program (CMVP)

- **Security levels**
 - Level 1: no specific physical security mechanisms
 - Level 2: tamper evidence requirement
 - Level 3: high probability of detecting and responding to attempts of physical access
 - Level 4: complete envelop of protection with the indent of detecting and responding to all unauthorized attempts of physical access
HSM – FIPS 140-2 (2)

- Requirement areas (11) for cryptographic modules
 - Specifications: what has to be documented
 - Parts/interfaces: which in/out information flows and how it must be segregated
 - Roles, services and authentication: who can do what and how it is checked
 - Final state model: documentation of high level states and transitions
 - Physical security: tamper evidence/respondiveness/resistance
 - Operational environment: which operating system
 - Cryptographic key management: generation, entry, output, storage and destruction of keys
 - EMI/EMC (Electromagnetic Interference/Compatibility)
 - Self-tests: what must be tested and when; what when a test fails
 - Design assurance: information to be provided
 - Mitigation of other attacks: how it is done
HSM – FIPS 140-2 Certification Process

General Flow of FIPS 140-2 Testing and Validation

1. Vendor selects a lab; Submits module for testing; Module IUT

1a. NVLAP Accredited FIPS 140-2 CMT Lab
 - Test for conformance To FIPS 140-2; Writes test report
 - Module’s Test Report

2. CMT Test Report to NIST/CSE for validation; Module Review Pending

3. NIST/CSE
 - Cost Recovery Fee Received Prior to Validation
 - Reviewer Assigned Module Under Review

4. Lab submits questions for guidance and clarification

5. NIST submits comments from test report to lab for resolution

5a. NIST/CSE issue testing and Implementation Guidance

5b. Issue validation certificate (via lab to the vendor)

5c. Finalization; NIST adds module to validated modules list at www.nist.gov/csrc

Cryptographic Module Vendor

An Atos Origin Company
HSM – Common Criteria (1)

- CC
 - Common Criteria for Information Technology Security Evaluation (evaluation methodology)
 - No security levels (FIPS), but Evaluation Assurance Levels (EAL1-EAL7)
 - National certification bodies with Common Criteria Recognition Agreement (CCRA)
 - Definition of security in Security Target (ST)
HSM – Common Criteria (2)

- 7 Classes
 - ACM – Configuration Management
 - ADO – Delivery and Operation
 - ADV – Development
 - ADG – Guidance documentation
 - ACL – Lifecycle support
 - ATE – Tests
 - AVA – Vulnerability Analysis
HSM – PCI HSM

- PCI SSC = VISA, MASTERCARD, JCB, AMEX, DISCOVERY
- Range of end-to-end security requirements: PCI PED, PCI UPT, PCI DSS, PCA PA DSS, PCI PIN and… PCI HSM
- Still draft
- Based upon FIPS, including payment functionality
- Own certification scheme
HSM – Manufacturers (1)

- Atos Worldline SA/NV
- Safenet
- Bull
- IBM
HSM – Manufacturers (2)

- Ncipher (now Thales)
- Utimaco
- Thales
- ARX
Filip Demaertelaere
Head of Service Data Encryption Peripheral (DEP)
Head of End-to-End Security
T&P/ENG/DEP - T&P/ENG/ES - Atos Worldline SA/NV
filip.demaertelaere@atosorigin.com
Phone: +32 (0)2 727 61 67
GSM: +32 (0)495 59 69 05
Fax: + 32 (0)2 727 62 50
DEP Hotline: dep.hotline-atosworldline@atosorigin.com
Atos Worldline is an Atos Origin company: www.atosworldline.be
Haachtsesteenweg 1442 Chaussée de Haecht- 1130 Brussels Belgium