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Applications

• digital signatures

• data authentication

• protection of passwords

• confirmation of knowledge/commitment

• micropayments

• pseudo-random string generation/key derivation

• construction of MAC algorithms, stream ciphers, 
block ciphers,…
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Security requirements (n-bit result)
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Informal definitions (1)

• no secret parameters

• input string x of arbitrary length  output h(x) of 
fixed bitlength n

• computation ―easy‖

• One Way Hash Function (OWHF)
– preimage resistance

– 2nd preimage resistance

• Collision Resistant Hash Function (CRHF): OWHF +
– collision resistant



Brute force (2nd) preimage

• Multiple target second preimage (1 out of many): 
if one can attack 2t simultaneous targets, the effort to find a 
single preimage is 2n-t

• Multiple target second preimage (many out of 
many): 

– time-memory trade-off with Θ(2n) precomputation and storage Θ(22n/3) 
time per (2nd) preimage: Θ(22n/3) [Hellman‘80] 

– full cost per (2nd) preimage  from Θ(2n)  to Θ(22n/5) [Wiener‘02]

(if Θ(23n/5) targets are attacked)

• answer: randomize hash function: key, parameter, 
salt, spice,…



Brute force collision search

• Consider the functional graph of f

h(x)x
h

collision



Brute force collision search

• Low memory and parallel  
implementation of the birthday attack 
[Pollard‘78][Quisquater‘89][Wiener-van Oorschot‘94]

• Distinguished point (d bits) 

– Θ(e2n/2 + e 2d+1) steps with e the cost of one 
function evaluation

– Θ(n2n/2-d) memory

– full cost:  Θ(e n2n/2) [Wiener‘02]
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Brute force attacks in practice

• (2nd) preimage search

– n = 128: 23 B$ for 1 year if one can attack 240 targets in 
parallel

• parallel collision search

– n = 128: 1 M$ for 12 hours (or 1 year on 60K PCs)

– n = 160: 90 M$ for 1 year

– need 256-bit result for long term security (30 years or more)



Collision resistance

• hard to achieve in practice
– many attacks

– requires double output length 2n/2 versus 2n

• hard to achieve in theory
– [Simon‘98] one cannot derive collision resistance from ―general‖ 

preimage resistance (there exists no black box reduction)

• hard to formalize: requires 
– family of functions: key, parameter, salt, spice,

– ―human ignorance‖ trick [Stinson‘06], [Rogaway‘06] 
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Can we get rid of collision resistance?

• UOWHF (TCR, eSec) randomize hash function 
after choosing the message [Naor-Yung‘89]
– how to enforce this in practice?

• randomized hashing: RMX mode [Halevi-Krawczyk‘05]

H( r || x1 r || x2 r || … || xt r )

– needs e-SPR (not met by MD5 and SHA-1 reduced to 53 rounds)

– issues with insider attacks (i.e. attacks by the signer)



Relation between properties 

[Rogaway-Shrimpton‘04] 

[Stinson‘06]

[Reyhanitabar-Susilo-Mu‘10]



Properties in practice

• Collision resistance is not always necessary

• Other properties are needed:
– pseudo-randomness if keyed (with secret key)

– near-collision resistance

– partial preimage resistance

– multiplication freeness 

– pseudo-random oracle property

• how to formalize these requirements and the 
relation between them?



Iteration
(mode of compression function)
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Hash function: iterated structure

Split messages into blocks of fixed length and hash 

them block by block with a compression function f

Efficient and elegant

But …
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Security relation between f and h

• Iterating f can degrade its security
– trivial example: 2nd preimage
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Security relation between f and h (2)

• Solution: Merkle-Damgård (MD) strengthening 

– fix IV, use unambiguous padding and insert length at the end 

• f is collision resistant  h is collision resistant

[Merkle‘89-Damgård‘89]

• f is ideally 2nd preimage resistant  h is ideally 2nd

preimage resistant [Lai-Massey‘92]?

• few hash functions have a strong compression function 

• very few hash functions treat xi and Hi-1 in the same way



Security relation between f and h (3)

Length extension: if one knows h(x), easy to compute h(x || y) 
without knowing x
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Security relation between f and h (4)

• MD with output transformation preserves pseudo-random 
oracle (PRO) property [Coron+05]

• MD with envelope method h(K || x || K) works for pseudo-

randomness/MAC [Bellare-Cannetti-Krawczyk‘96]

– but there are some problems and HMAC is a better construction

• MD preserves Preimage Awareness [Dodis-Ristenpart-Shrimpton‘09]

– Property ―in between‖ CR (collision resistance) and PRO

• MD does not work for UOWHF [Bellare-Rogaway‘97]



Attacks on MD: 1999-2006

• multi-collision attack and impact on concatenation [Joux‘04]

– the concatenation of 2 iterated hash functions (g(x)= h1(x) || h2(x)) is as most as 

strong as the strongest of the two (even if both are independent)  

– cost of collision attack against g at most  n1 .  2n2/2 + 2n1/2 << 2(n1 + n2)/2

• long message 2nd preimage attack [Dean-Felten-Hu'99], [Kelsey-
Schneier‘05]

– if one hashes 2t message blocks with an iterated hash function, the effort to 
find a second preimage is only 2n-t+1 + t 2n/2+1

– appending the length does not help here!

• herding attack [Kelsey-Kohno‘06]

– reduces security of commitment using a hash function from 2n

– on-line 2n-t + precomputation 2.2(n+t)/2 + storage 2t



How (NOT) to strengthen a hash function?
[Joux’04]

• Answer: concatenation

• h1 (n1-bit result) and h2 (n2-bit result)

h2h1

g(x) = h1(x) || h2(x)

• Intuition: the strength of g against 

collision/(2nd) preimage attacks is the 

product of the strength of h1 and h2

— if both are ―independent‖

• But….



Multi-collisions [Joux ’04]

Consider h1 (n1-bit result) and h2 (n2-bit result), with n1 n2.

Concatenation of 2 iterated hash functions (g(x)= h1(x) || h2(x)) 
is as most as strong as the strongest of the two (even if both 
are independent)

• Cost of collision attack against g at most 

n1 .  2n2/2 + 2n1/2 <<  2(n1 + n2)/2

• Cost of (2nd) preimage attack against g at most

n1 . 2n2/2 + 2n1 + 2n2  << 2n1 + n2

• If either of the functions is weak, the attacks may work better.

• Main observation: finding multiple collisions for an iterated 
hash function is not much harder than finding a single 
collision (if the size of the internal memory is n bits)



Multi-collisions (2) [Joux ’04]

• Now h(x1||x2||x3||x4) = h(x‘1||x2||x3||x4) = h(x‘1||x‘2||x3||x4) =   … 

= h(x‘1||x‘2||x‘3||x‘4)  a 16-fold collision
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• For IV: collision for block 1: x1,  x‘1 

• For H1: collision for block 2: x2,  x‘2 

• For H2: collision for block 3: x3,  x‘3

• For H3: collision for block 4: x4,  x‘4 



Improving MD iteration

• degradation with use: salting (family of functions, 
randomization)

• extension attack + PRO preservation: strong 
output transformation g (which includes total 
length and salt)

• long message 2nd preimage: preclude fix points

– counter f fi [Biham-Dunkelman]

• multi-collisions, herding: avoid breakdown at 2n/2

with larger internal memory: known as wide pipe

– e.g., extended MD4, RIPEMD, [Lucks‘05]



Improving MD iteration

salt + output transformation + counter + wide pipe
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Compression functions
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Block cipher (EK) based

Davies-Meyer

xi E
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Miyaguchi-Preneel

xi E
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• output length = block length

• 12 secure compression functions in ideal cipher model

• requires 1 key schedule per encryption



Permutation (π) based

Large permutation
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Permutation (π) based: sponge

Examples: Panama, RadioGatun, Grihndahl, Keccak
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Permutation (π) based

small permutation
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SHA-{0,1,2,3}
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MDx-type hash function history
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The complexity of collision attacks
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MD4 [Rivest’90]

• 3 rounds (48 steps)

• collisions for 2 rounds [Merkle‘90, denBoerBosselaers‘91] 

• collisions for full MD4 in 220 steps [Dobbertin‘96]

• (second) preimage for 2 rounds [Dobbertin‘97] 

• collisions for full MD4 by hand [Wang+‘04]

• practical preimage attack for 1 in 256 messages [Wang+‘05] 

• abandoned since 1993 (except for HMAC-MD4?)



MD5 [Rivest’91]

• 4 rounds (64 steps)

• pseudo-collisions [denBoer-Bosselaers‘93] 

• collisions for compression function [Dobbertin‘96]

• collisions for hash function

– [Wang+‘04] – 15 minutes

– …

– [Stevens+‘09] – milliseconds

– brute force (264): 1M$ 10 hours in ‘09

• 2nd preimage in 2123 [Sasaki-Aoki‘09]



MD5

• Advice (RIPE since ‗92, 
RSA since ‗96): stop 
using MD5

• Largely ignored by 
industry until 2009 
(click on a cert...)



SHA(-0) [NIST’93]

• now called SHA-0, because of ‘94 of publication SHA-1 

• very similar to MD5:

– 16 extra steps (from 64 to 80)

– message expansion uses bitwise code rather than repetition
wj ← (wj−3 ⊕ wj−8 ⊕ wj−14 ⊕ wj−16 )  j>15

– quasicyclic code with  dmin = 23

• 1994: withdrawn by NIST for unidentified flaw

• 2004: collisions for in 251 [Joux+‘04]

• 2005: collisions in 239 [Wang+‘05]

• 2007: collisions in 232 [Joux+‘07]

• 2008: collisions in 1 hour [Manuel-Peyrin‘08]

• 2008: preimages for 52 of 80 steps in 2156.6 [Aoki-Sasaki‘09]



• fix to SHA-0

• add rotation to message expansion: quasicyclic code, dmin = 25 
wj ← (wj−3 ⊕ wj−8 ⊕ wj−14 ⊕ wj−16 ) >>> 1   j > 15

SHA-1 [NIST‘95]

• 53 steps  [Oswald-Rijmen‘04 and Biham-Chen‘04]

• 58 steps [Wang+‘05]
• 64 steps in 235 – highly structured [De Cannière-Rechberger‘06-‘07]:  

• 70 steps in 244 – highly structured [De Cannière-Rechberger‘06-‘07]: 
• 70 steps 239 (4 days on a PC) [Joux-Peyrin‘07]

• 269 [Wang+‘05] 

• 263 ? [Wang+‘05 - unpublished]

• 251 ? [Sugita+‘06 ]

• 262 ? [Mendel+‘08 - unpublished]

• 252 ?? [McDonald+‘09 - unpublished]
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preimages for 48/80 steps in 2160- [Aoki-Sasaki‘09]



SHA-1
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NIST and SHA-1



Impact of collisions

• collisions for MD5, SHA-0, SHA-1

– 2 messages differ in a few bits in 1 to 3 512-bit input blocks

– limited control over message bits in these blocks

– but arbitrary choice of bits before and after them

• what is achievable for MD5?

– 2 colliding executables/postscript/gif/…[Lucks-Daum‘05]

– 2 colliding RSA public keys – thus with colliding X.509 

certificates [Lenstra+‘04]

– chosen prefix attack: different IDs, same certificate 

[Stevens+‘07]

– 2 arbitrary colliding files (no constraints) in 12 hours 

for 1 M$



Rogue CA attack 
[Sotirov-Stevens-Appelbaum-Lenstra-Molnar-Osvik-de Weger ’08]

Self-signed 

root key

CA1 CA2 Rogue CA

User1 User2 User x

• request user cert; by special 
collision this results in a fake CA 
cert (need to predict serial 
number + validity period) 

• 6 CAs have issued certificates signed with MD5 in 2008:

— Rapid SSL, Free SSL (free trial certificates offered by RapidSSL), TC TrustCenter AG, RSA 
Data Security, Verisign.co.jp

impact: rogue CA that 
can issue certs that 
are trusted by all 
browsers



Impact of MD5 collisions

• digital signatures: only an issue if for non-
repudiation

• none for signatures computed before attacks 
were public (1 August 2004)

• none for certificates if public keys are 
generated at random in a controlled 
environment

• substantial for signatures after 1 August 
2005 (cf. traffic tickets in Australia)



And (2nd) preimages?

• security degrades with number of applications

• for large messages even with the number of 
blocks (cf. supra)

• specific results: 
– MD2: 273  [Knudsen+09]

– MD4: 2102  [Leurent‘08]

– MD5: 2123 [Sasaki-Aoki‘09]

– SHA-0: 52 of 80 steps in 2156.6 [Aoki-Sasaki‘09]

– SHA-1: 48 of 80 steps in 2159.3 [Aoki-Sasaki‘09]



HMAC

• HMAC keys through the IV (plaintext) 
– collisions for MD5 invalidate current security proof of HMAC-MD5

Rounds in f2 Rounds in f1 Data complexity

MD4 48 48 272 CP + 277 time

MD5 64 33 of 64 2126.1 CP

MD5 64 64 251 CP & 2100 time (RK)

SHA-0 80 80 2109 CP

SHA-1 80 53 of 80 298.5 CP

f2

f1

xK1

K2



Fixes/Alternatives

• Upgrading algorithms is always hard

• TLS uses MD5 || SHA-1 to protect 
algorithm negotiation

• Upgrading negotiation algorithm is 
even harder: need to upgrade TLS 1.1 
to TLS 1.2



SHA-2 [NIST‘02]

• SHA-224, SHA-256, SHA-384, SHA-512

– non-linear message expansion

– more complex operations

– 64/80 steps

– SHA-384 and SHA-512: 64-bit architectures

• SHA-256 collisions: 24 steps [Sanadhya-Sarkar‘08]

• SHA-256 preimages: 43/64 steps [Aoki+‘09]

• implementations today faster than anticipated

• adoption

– industry may migrate to SHA-2 by 2011 or may wait for SHA-3 

– very slow for TLS/IPsec (no pressing need)



Performance of hash functions - Bernstein
(cycles/byte) AMD Intel Pentium D 2992 MHz (f64)
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SHA-3
(bits and bytes)
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NIST AHS competition (SHA-3)

• SHA-3 must support 224, 256, 384, and 512-bit message 
digests, and must support a maximum message length of at 
least 264 bits
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The Candidates

Slide credit: Christophe De Cannière



The Candidates
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Preliminary Cryptanalysis

Slide credit: Christophe De Cannière



End of Round 1 Candidates
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Iteration modes

• Wide pipe (7): BMW, Echo, Fugue, Grøstl, JH, 
Keccak, Simd
– Skein has both wide and narrow pipe

• Haifa: 
– Echo, Shavite-3

– Variant: Skein



Compression function

• Block cipher based
– Davies-Meyer: Shavite-3, Skein

– Miyaguchi-Preneel variant: BMW

– Other: Shabal

• Permutation based
– Sponge: Hamsi, Keccak

– Sponge variant: Luffa

– Other: Echo, Grøstl, JH



Bits and bytes

• SPN (9)

• Balanced Feistel: JH, Shavite-3, Skein

• Unbalanced Feistel: Blake, SIMD

• S-boxes and diffusion (7)
– AES-round function (8x8): ECHO, Shavite-3 (benefit from Intel AES instruction)

– AES-inspired (8x8):  Grøstl, Fugue

– 4x4: JH, Hamsi, Luffa

• Arithmetic/logic (7)
– ARX (addition/rotation/xor): Blake, BMW, CubeHash, Skein

– AN (and/not): Keccac, Shabal

– ANO (and/not/or): SIMD



Issues arisen during Round 1

• Security: 

– controversy around pseudo-collision attacks and memory 

requirements

– proofs have not helped much to survive

• Performance: roughly as fast or faster than SHA-2

– tunable security/performance tradeoff: nominal parameters?

– large memory (> 100 bytes) may be a problem for small devices

– can we exploit 64 or 128 cores? Intel AES instruction?

• 14 Round 2 candidates

– most are wide-pipe designs or sponge-like designs

– two main types: AES-based and AXR (addition/xor/rotate)



Security: SHA-3 Zoo
http://ehash.iaik.tugraz.at/wiki/The_SHA-3_Zoo



Performance of hash functions 
[Bernstein09] http://bench.cr.yp.to/ebash.html
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SHA-4

• an open competition such as SHA-3 is bound to 
result in new insights between 2009-2012

• only few of these can be incorporated using 
―tweaks‖

• the winner selected in 2012 will reflect the state 
of the art in October 2008

• nevertheless, it is unlikely that we will have a 
SHA-4 competition before 2030



Hash functions: conclusions

• SHA-1 would have needed 128-160 steps 
instead of 80

• recent attacks: cryptographic meltdown but not 
dramatic for most applications

– clear warning: upgrade asap

• theory is developing for more robust iteration 
modes and extra features; still early for building 
blocks

• Nirwana: efficient hash functions with security 
reduction



The end

Thank you for 

your attention
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• Your talking point bullet text here

• Your next bullet point talking text here

• Third talking point, etc.
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