
Insert presenter logo
here on slide master

Title of Presentation

Bart Preneel

COSIC/Kath. Univ. Leuven

(Belgium)

Session ID: CRYP-202

Session Classification: Hash functions

decoded

The First 30 Years of

Cryptographic Hash

Functions

and the NIST SHA-3

Competition

Hash functions

X.509 Annex D

MDC-2

MD2, MD4, MD5

SHA-1

This is an input to a crypto-

graphic hash function. The input

is a very long string, that is

reduced by the hash function to a

string of fixed length. There are

additional security conditions: it

should be very hard to find an

input hashing to a given value (a

preimage) or to find two colliding

inputs (a collision).

1A3FD4128A198FB3CA345932h

RIPEMD-160

SHA-256

SHA-512

SHA-3

Hash function history 101

1980

1990

2000

2010

H
A

R
D

W
A

R
E

S
O

F
T

W
A

R
E

DES

AES

single

block

length

double

block

length

permu-

tations

RSA

ad hoc

schemes

security

reduction

for

factoring,

DLOG,

lattices

MD2

MD4

MD5

SHA-1

RIPEMD-160

SHA-2

Whirlpool

SHA-3

SNEFRU

Applications

• digital signatures

• data authentication

• protection of passwords

• confirmation of knowledge/commitment

• micropayments

• pseudo-random string generation/key derivation

• construction of MAC algorithms, stream ciphers,
block ciphers,…

Agenda

Definitions

Iterations (modes)

Compression functions

SHA-{0,1,2,3}

5

Bits and bytes

Hash function flavors

cryptographic hash function

MDCMAC

OWHF CRHF

UOWHF

(TCR)

this

talk

Security requirements (n-bit result)

h

?

h(x)

h

x

h(x)

h

?

h(x‘)

h

?

h

?

==

preimage 2nd preimage collision

2n 2n 2n/2

h(x‘)h(x)

Informal definitions (1)

• no secret parameters

• input string x of arbitrary length output h(x) of
fixed bitlength n

• computation ―easy‖

• One Way Hash Function (OWHF)
– preimage resistance

– 2nd preimage resistance

• Collision Resistant Hash Function (CRHF): OWHF +
– collision resistant

Brute force (2nd) preimage

• Multiple target second preimage (1 out of many):
if one can attack 2t simultaneous targets, the effort to find a
single preimage is 2n-t

• Multiple target second preimage (many out of
many):

– time-memory trade-off with Θ(2n) precomputation and storage Θ(22n/3)
time per (2nd) preimage: Θ(22n/3) [Hellman‘80]

– full cost per (2nd) preimage from Θ(2n) to Θ(22n/5) [Wiener‘02]

(if Θ(23n/5) targets are attacked)

• answer: randomize hash function: key, parameter,
salt, spice,…

Brute force collision search

• Consider the functional graph of f

h(x)x
h

collision

Brute force collision search

• Low memory and parallel
implementation of the birthday attack
[Pollard‘78][Quisquater‘89][Wiener-van Oorschot‘94]

• Distinguished point (d bits)

– Θ(e2n/2 + e 2d+1) steps with e the cost of one
function evaluation

– Θ(n2n/2-d) memory

– full cost: Θ(e n2n/2) [Wiener‘02]

l

c

l = c = (/8) 2n/2

h(x)x h

Brute force attacks in practice

• (2nd) preimage search

– n = 128: 23 B$ for 1 year if one can attack 240 targets in
parallel

• parallel collision search

– n = 128: 1 M$ for 12 hours (or 1 year on 60K PCs)

– n = 160: 90 M$ for 1 year

– need 256-bit result for long term security (30 years or more)

Collision resistance

• hard to achieve in practice
– many attacks

– requires double output length 2n/2 versus 2n

• hard to achieve in theory
– [Simon‘98] one cannot derive collision resistance from ―general‖

preimage resistance (there exists no black box reduction)

• hard to formalize: requires
– family of functions: key, parameter, salt, spice,

– ―human ignorance‖ trick [Stinson‘06], [Rogaway‘06]

13

Can we get rid of collision resistance?

• UOWHF (TCR, eSec) randomize hash function
after choosing the message [Naor-Yung‘89]
– how to enforce this in practice?

• randomized hashing: RMX mode [Halevi-Krawczyk‘05]

H(r || x1 r || x2 r || … || xt r)

– needs e-SPR (not met by MD5 and SHA-1 reduced to 53 rounds)

– issues with insider attacks (i.e. attacks by the signer)

Relation between properties

[Rogaway-Shrimpton‘04]

[Stinson‘06]

[Reyhanitabar-Susilo-Mu‘10]

Properties in practice

• Collision resistance is not always necessary

• Other properties are needed:
– pseudo-randomness if keyed (with secret key)

– near-collision resistance

– partial preimage resistance

– multiplication freeness

– pseudo-random oracle property

• how to formalize these requirements and the
relation between them?

Iteration
(mode of compression function)

17

Hash function: iterated structure

Split messages into blocks of fixed length and hash

them block by block with a compression function f

Efficient and elegant

But …

f

x1

IV

f

x2

H1

f

x3

H2

f

x4

H3

g

Security relation between f and h

• Iterating f can degrade its security
– trivial example: 2nd preimage

f

x1

IV

f

x2

H1

f

x3

H2

f

x4

H3
g

f

x2

IV = H1

f

x3

H2

f

x4

H3

g

Security relation between f and h (2)

• Solution: Merkle-Damgård (MD) strengthening

– fix IV, use unambiguous padding and insert length at the end

• f is collision resistant h is collision resistant

[Merkle‘89-Damgård‘89]

• f is ideally 2nd preimage resistant h is ideally 2nd

preimage resistant [Lai-Massey‘92]?

• few hash functions have a strong compression function

• very few hash functions treat xi and Hi-1 in the same way

Security relation between f and h (3)

Length extension: if one knows h(x), easy to compute h(x || y)
without knowing x

f

x1

IV

f

x2

H1

f

x3

H2

f

x4

H3

g

Solution: output transformation

f

x1

IV

f

x2

H1

f

x3

H2 H3= h(x)

f

x1

IV

f

x2

H1

f

x3

H2

f

y

H3
H4= h(x || y)

Security relation between f and h (4)

• MD with output transformation preserves pseudo-random
oracle (PRO) property [Coron+05]

• MD with envelope method h(K || x || K) works for pseudo-

randomness/MAC [Bellare-Cannetti-Krawczyk‘96]

– but there are some problems and HMAC is a better construction

• MD preserves Preimage Awareness [Dodis-Ristenpart-Shrimpton‘09]

– Property ―in between‖ CR (collision resistance) and PRO

• MD does not work for UOWHF [Bellare-Rogaway‘97]

Attacks on MD: 1999-2006

• multi-collision attack and impact on concatenation [Joux‘04]

– the concatenation of 2 iterated hash functions (g(x)= h1(x) || h2(x)) is as most as

strong as the strongest of the two (even if both are independent)

– cost of collision attack against g at most n1 . 2n2/2 + 2n1/2 << 2(n1 + n2)/2

• long message 2nd preimage attack [Dean-Felten-Hu'99], [Kelsey-
Schneier‘05]

– if one hashes 2t message blocks with an iterated hash function, the effort to
find a second preimage is only 2n-t+1 + t 2n/2+1

– appending the length does not help here!

• herding attack [Kelsey-Kohno‘06]

– reduces security of commitment using a hash function from 2n

– on-line 2n-t + precomputation 2.2(n+t)/2 + storage 2t

How (NOT) to strengthen a hash function?
[Joux’04]

• Answer: concatenation

• h1 (n1-bit result) and h2 (n2-bit result)

h2h1

g(x) = h1(x) || h2(x)

• Intuition: the strength of g against

collision/(2nd) preimage attacks is the

product of the strength of h1 and h2

— if both are ―independent‖

• But….

Multi-collisions [Joux ’04]

Consider h1 (n1-bit result) and h2 (n2-bit result), with n1 n2.

Concatenation of 2 iterated hash functions (g(x)= h1(x) || h2(x))
is as most as strong as the strongest of the two (even if both
are independent)

• Cost of collision attack against g at most

n1 . 2n2/2 + 2n1/2 << 2(n1 + n2)/2

• Cost of (2nd) preimage attack against g at most

n1 . 2n2/2 + 2n1 + 2n2 << 2n1 + n2

• If either of the functions is weak, the attacks may work better.

• Main observation: finding multiple collisions for an iterated
hash function is not much harder than finding a single
collision (if the size of the internal memory is n bits)

Multi-collisions (2) [Joux ’04]

• Now h(x1||x2||x3||x4) = h(x‘1||x2||x3||x4) = h(x‘1||x‘2||x3||x4) = …

= h(x‘1||x‘2||x‘3||x‘4) a 16-fold collision

f

x1, x‘1

IV H1

f

x2, x‘2

H2

f

x4, x‘4x3, x‘3

H3

f

• For IV: collision for block 1: x1, x‘1

• For H1: collision for block 2: x2, x‘2

• For H2: collision for block 3: x3, x‘3

• For H3: collision for block 4: x4, x‘4

Improving MD iteration

• degradation with use: salting (family of functions,
randomization)

• extension attack + PRO preservation: strong
output transformation g (which includes total
length and salt)

• long message 2nd preimage: preclude fix points

– counter f fi [Biham-Dunkelman]

• multi-collisions, herding: avoid breakdown at 2n/2

with larger internal memory: known as wide pipe

– e.g., extended MD4, RIPEMD, [Lucks‘05]

Improving MD iteration

salt + output transformation + counter + wide pipe

f

x1

IV

f

x2

H1

f

x3

H2

f

x4

H3 g

1

salt salt salt salt salt

|x|

many more results on property preservation

2 3 4

Compression functions

29

Block cipher (EK) based

Davies-Meyer

xi E

Hi-1

Hi

Miyaguchi-Preneel

xi E

Hi-1

Hi

• output length = block length

• 12 secure compression functions in ideal cipher model

• requires 1 key schedule per encryption

Permutation (π) based

Large permutation

xi

π

H1i-1 H1i

H2iH2i-1
π

xi

HiHi-1

pad

sponge MD6

Permutation (π) based: sponge

Examples: Panama, RadioGatun, Grihndahl, Keccak

x1

π

H10

H20

x2

π

x3

π

x4

π π π π

h1

π

h2

absorb buffer squeeze

Permutation (π) based

small permutation

JH

xi

π

H1i-1 H1i

H2iH2i-1

Hi

Grøstl

xi

π
Hi-1

π

SHA-{0,1,2,3}

34

MDx-type hash function history

MD5

SHA

SHA-1

SHA-256

SHA-512

HAVAL

Ext. MD4

RIPEMD

RIPEMD-160

MD4 90

91

92

93

94

95

02

The complexity of collision attacks

0

10

20

30

40

50

60

70

80

90

19
92

19
92

19
94

19
96

19
98

20
00

20
02

20
04

20
06

20
08

MD4

MD5

SHA-0

SHA-1

Brute force

Brute force: 1 million PCs or US$ 100 000 hardware

MD4 [Rivest’90]

• 3 rounds (48 steps)

• collisions for 2 rounds [Merkle‘90, denBoerBosselaers‘91]

• collisions for full MD4 in 220 steps [Dobbertin‘96]

• (second) preimage for 2 rounds [Dobbertin‘97]

• collisions for full MD4 by hand [Wang+‘04]

• practical preimage attack for 1 in 256 messages [Wang+‘05]

• abandoned since 1993 (except for HMAC-MD4?)

MD5 [Rivest’91]

• 4 rounds (64 steps)

• pseudo-collisions [denBoer-Bosselaers‘93]

• collisions for compression function [Dobbertin‘96]

• collisions for hash function

– [Wang+‘04] – 15 minutes

– …

– [Stevens+‘09] – milliseconds

– brute force (264): 1M$ 10 hours in ‘09

• 2nd preimage in 2123 [Sasaki-Aoki‘09]

MD5

• Advice (RIPE since ‗92,
RSA since ‗96): stop
using MD5

• Largely ignored by
industry until 2009
(click on a cert...)

SHA(-0) [NIST’93]

• now called SHA-0, because of ‘94 of publication SHA-1

• very similar to MD5:

– 16 extra steps (from 64 to 80)

– message expansion uses bitwise code rather than repetition
wj ← (wj−3 ⊕ wj−8 ⊕ wj−14 ⊕ wj−16) j>15

– quasicyclic code with dmin = 23

• 1994: withdrawn by NIST for unidentified flaw

• 2004: collisions for in 251 [Joux+‘04]

• 2005: collisions in 239 [Wang+‘05]

• 2007: collisions in 232 [Joux+‘07]

• 2008: collisions in 1 hour [Manuel-Peyrin‘08]

• 2008: preimages for 52 of 80 steps in 2156.6 [Aoki-Sasaki‘09]

• fix to SHA-0

• add rotation to message expansion: quasicyclic code, dmin = 25
wj ← (wj−3 ⊕ wj−8 ⊕ wj−14 ⊕ wj−16) >>> 1 j > 15

SHA-1 [NIST‘95]

• 53 steps [Oswald-Rijmen‘04 and Biham-Chen‘04]

• 58 steps [Wang+‘05]
• 64 steps in 235 – highly structured [De Cannière-Rechberger‘06-‘07]:

• 70 steps in 244 – highly structured [De Cannière-Rechberger‘06-‘07]:
• 70 steps 239 (4 days on a PC) [Joux-Peyrin‘07]

• 269 [Wang+‘05]

• 263 ? [Wang+‘05 - unpublished]

• 251 ? [Sugita+‘06]

• 262 ? [Mendel+‘08 - unpublished]

• 252 ?? [McDonald+‘09 - unpublished]

c
o

ll
is

io
n

s

preimages for 48/80 steps in 2160- [Aoki-Sasaki‘09]

SHA-1

0

10

20

30

40

50

60

70

80

90

2003 2004 2005 2006 2007 2008 2009 2010

SHA-1

[Wang+’04]

[Wang+’05]
[Mendel+’08]

[McDonald+’09]

[Manuel+’09]

Most attacks

unpublished/withdrawn

[Sugita+’06]

log2 complexity

Prediction: collision for SHA-1 in the next 12-18 months

NIST and SHA-1

Impact of collisions

• collisions for MD5, SHA-0, SHA-1

– 2 messages differ in a few bits in 1 to 3 512-bit input blocks

– limited control over message bits in these blocks

– but arbitrary choice of bits before and after them

• what is achievable for MD5?

– 2 colliding executables/postscript/gif/…[Lucks-Daum‘05]

– 2 colliding RSA public keys – thus with colliding X.509

certificates [Lenstra+‘04]

– chosen prefix attack: different IDs, same certificate

[Stevens+‘07]

– 2 arbitrary colliding files (no constraints) in 12 hours

for 1 M$

Rogue CA attack
[Sotirov-Stevens-Appelbaum-Lenstra-Molnar-Osvik-de Weger ’08]

Self-signed

root key

CA1 CA2 Rogue CA

User1 User2 User x

• request user cert; by special
collision this results in a fake CA
cert (need to predict serial
number + validity period)

• 6 CAs have issued certificates signed with MD5 in 2008:

— Rapid SSL, Free SSL (free trial certificates offered by RapidSSL), TC TrustCenter AG, RSA
Data Security, Verisign.co.jp

impact: rogue CA that
can issue certs that
are trusted by all
browsers

Impact of MD5 collisions

• digital signatures: only an issue if for non-
repudiation

• none for signatures computed before attacks
were public (1 August 2004)

• none for certificates if public keys are
generated at random in a controlled
environment

• substantial for signatures after 1 August
2005 (cf. traffic tickets in Australia)

And (2nd) preimages?

• security degrades with number of applications

• for large messages even with the number of
blocks (cf. supra)

• specific results:
– MD2: 273 [Knudsen+09]

– MD4: 2102 [Leurent‘08]

– MD5: 2123 [Sasaki-Aoki‘09]

– SHA-0: 52 of 80 steps in 2156.6 [Aoki-Sasaki‘09]

– SHA-1: 48 of 80 steps in 2159.3 [Aoki-Sasaki‘09]

HMAC

• HMAC keys through the IV (plaintext)
– collisions for MD5 invalidate current security proof of HMAC-MD5

Rounds in f2 Rounds in f1 Data complexity

MD4 48 48 272 CP + 277 time

MD5 64 33 of 64 2126.1 CP

MD5 64 64 251 CP & 2100 time (RK)

SHA-0 80 80 2109 CP

SHA-1 80 53 of 80 298.5 CP

f2

f1

xK1

K2

Fixes/Alternatives

• Upgrading algorithms is always hard

• TLS uses MD5 || SHA-1 to protect
algorithm negotiation

• Upgrading negotiation algorithm is
even harder: need to upgrade TLS 1.1
to TLS 1.2

SHA-2 [NIST‘02]

• SHA-224, SHA-256, SHA-384, SHA-512

– non-linear message expansion

– more complex operations

– 64/80 steps

– SHA-384 and SHA-512: 64-bit architectures

• SHA-256 collisions: 24 steps [Sanadhya-Sarkar‘08]

• SHA-256 preimages: 43/64 steps [Aoki+‘09]

• implementations today faster than anticipated

• adoption

– industry may migrate to SHA-2 by 2011 or may wait for SHA-3

– very slow for TLS/IPsec (no pressing need)

Performance of hash functions - Bernstein
(cycles/byte) AMD Intel Pentium D 2992 MHz (f64)

0

5

10

15

20

25

30

35

40

45

MD4 SHA-1 SHA-

256

Whirlp. AES MD5 RMD-

160
SHA-

512
AES-

Block

SHA-3
(bits and bytes)

52

NIST AHS competition (SHA-3)

• SHA-3 must support 224, 256, 384, and 512-bit message
digests, and must support a maximum message length of at
least 264 bits

64
51

14
5 1

0

20

40

60

80

Q4/08 Q3/09 Q4/10 Q2/12

round 1
round 2

final

Call: 02/11/07

Deadline (64): 31/10/08

Round 1 (51): 9/12/08

Round 2 (14): 24/7/09

Standard: 2012

The Candidates

Slide credit: Christophe De Cannière

The Candidates

Slide credit: Christophe De Cannière

Preliminary Cryptanalysis

Slide credit: Christophe De Cannière

End of Round 1 Candidates

a

Slide credit: Christophe De Cannière

Round 2 Candidates

a

Slide credit: Christophe De Cannière

Iteration modes

• Wide pipe (7): BMW, Echo, Fugue, Grøstl, JH,
Keccak, Simd
– Skein has both wide and narrow pipe

• Haifa:
– Echo, Shavite-3

– Variant: Skein

Compression function

• Block cipher based
– Davies-Meyer: Shavite-3, Skein

– Miyaguchi-Preneel variant: BMW

– Other: Shabal

• Permutation based
– Sponge: Hamsi, Keccak

– Sponge variant: Luffa

– Other: Echo, Grøstl, JH

Bits and bytes

• SPN (9)

• Balanced Feistel: JH, Shavite-3, Skein

• Unbalanced Feistel: Blake, SIMD

• S-boxes and diffusion (7)
– AES-round function (8x8): ECHO, Shavite-3 (benefit from Intel AES instruction)

– AES-inspired (8x8): Grøstl, Fugue

– 4x4: JH, Hamsi, Luffa

• Arithmetic/logic (7)
– ARX (addition/rotation/xor): Blake, BMW, CubeHash, Skein

– AN (and/not): Keccac, Shabal

– ANO (and/not/or): SIMD

Issues arisen during Round 1

• Security:

– controversy around pseudo-collision attacks and memory

requirements

– proofs have not helped much to survive

• Performance: roughly as fast or faster than SHA-2

– tunable security/performance tradeoff: nominal parameters?

– large memory (> 100 bytes) may be a problem for small devices

– can we exploit 64 or 128 cores? Intel AES instruction?

• 14 Round 2 candidates

– most are wide-pipe designs or sponge-like designs

– two main types: AES-based and AXR (addition/xor/rotate)

Security: SHA-3 Zoo
http://ehash.iaik.tugraz.at/wiki/The_SHA-3_Zoo

Performance of hash functions
[Bernstein09] http://bench.cr.yp.to/ebash.html

0

5

10

15

20

25

30

35

40

Blake ECHO Hamsi Luffa Simd

256-bit hash,

32/64-bit code

(cycles/byte)

BMW

Cubehash

Fuge

Groestl

JH

Keccak

Shaba

Shavite-3

Skein

SHA-4

• an open competition such as SHA-3 is bound to
result in new insights between 2009-2012

• only few of these can be incorporated using
―tweaks‖

• the winner selected in 2012 will reflect the state
of the art in October 2008

• nevertheless, it is unlikely that we will have a
SHA-4 competition before 2030

Hash functions: conclusions

• SHA-1 would have needed 128-160 steps
instead of 80

• recent attacks: cryptographic meltdown but not
dramatic for most applications

– clear warning: upgrade asap

• theory is developing for more robust iteration
modes and extra features; still early for building
blocks

• Nirwana: efficient hash functions with security
reduction

The end

Thank you for

your attention

Your Headline Here (Title Caps)

• Your talking point bullet text here

• Your next bullet point talking text here

• Third talking point, etc.

68

Your Headline Here (Title Caps)

69

Your Headline Here (Title Caps)

70

Your Headline Here (Title Caps)

71

Arrows are semi-
transparent and can be
placed on top of other

objects

Useful Art – Copy, paste, and resize as needed

Type

text in

here

Type

text in

here

Type

text in

here

Type

text in

here

Type text in here

72

Divider Slide
(section one title here, and so on)

73

