
Copyright© 2009 KRvW Associates, LLC

Hands-on Security Tools
SecAppDev 2009

Copyright© 2009 KRvW Associates, LLC

Caveats and Warnings

 This is not a sales pitch for any product(s)

– If you want to talk to a sales person, tell me

– Otherwise, you will NOT get calls or spam

 You are not authorized to “test” any
systems other than your own

– If you do, then don’t call me from prison

– I don’t know you

Copyright© 2009 KRvW Associates, LLC

Prerequisites

 Computer (shared or solo)

– Windows, OS X, Linux

– Local admin access

 Virtual machine environment (Vmware,
Parallels, Virtual Box)

 JDK (newer is better)

 Development environment (for source analysis
tool)

– C or Java

– Make, Ant, Eclipse (3 or 2), Visual Studio, Rational,
Websphere

Copyright© 2009 KRvW Associates, LLC

Objectives and Intros

 We’ll look at several
tools described in my
security tools class

 Idea is to give
everyone a glimpse
of several tools

– NOT to turn anyone
into an expert on any
tool

 Safe, sales-free env

 Flow

– Describe each tool

– Demo (where

applicable)

– Class tries tool with

specific objectives

– Discuss results and

applicability

Copyright© 2009 KRvW Associates, LLC

Secondary Goals

 Learn

 Experiment with the tools

 Judge for yourself

 Have fun

Copyright© 2009 KRvW Associates, LLC

Setup environment

 We’ll use a combination of stuff

– Live CDs

 OWASP, Network Security Toolkit (NST) 1.8

– Desktop installations

 For live CDs, virtual machine is highly
recommended

– Copy CD image ISO into your VM folder

– Set up separate Linux VMs for each

 Recommend “no hard drive” options

Copyright© 2009 KRvW Associates, LLC

Infosec tools

Categories include

– Network port scanners

– Vulnerability scanners

– Application scanners

– Web application proxies

– Network sniffers

(For a great list, see http://sectools.org/)

Copyright© 2009 KRvW Associates, LLC

Software security tools

Categories include

– Static code analysis tools

– Testing tools

 Fuzzers

 Interposition tools

 System monitors

 Process analyzers

 Etc.

Copyright© 2009 KRvW Associates, LLC

Network and vul scanners

Usage: determine open and potentially
vulnerable network services

– Mainstay of “penetration testers”

– Useful for verifying deployment environment

– Validating on-going maintenance

– Rarely directly valuable to developers

Examples

– Nmap, nessus, Metasploit, ISS, Core Impact,
Retina

Copyright© 2009 KRvW Associates, LLC

NMAP

 Http://nmap.org

 Open source and free

 Available on numerous OSes

 Command line and GUI

 Unix command-line folks will love this…

– nmap -h lists options

– Numerous !

Http://nmap.org

Copyright© 2009 KRvW Associates, LLC

Nessus

 http://nessus.org

 Free, but not open source

– Parent company is http://www.tenablesecurity.com

– Commercial

 Supports several OSes

– Linux (RH, Suse, Debian, but not Ubuntu)

– Windows, OS X, Solaris, FreeBSD

 Client/server model (but 3.0 can now run without
server)

http://nessus.org
http://www.tenablesecurity.com

Copyright© 2009 KRvW Associates, LLC

Metasploit

 http://metasploit.org

 WARNING!!!

 Open source exploit/payload tool

 Extensible with exploits written in Ruby

 Runs on most OSes

 CLI, menu, GUI, and WUI front-ends

http://metasploit.org

Web application testing

 First, the manual approach

– A lot of times, there’s no substitute for this

– Kind of like a single-stepping debugger

 Testing proxies are useful

– Man-in-the-middle between browser and app

 Examples

– WebScarab, Paros Proxy

Copyright© 2009 KRvW Associates, LLC

Copyright© 2008 KRvW Associates, LLC

The tools we’ll use

 OWASP tools (freely available)

– Your web browser (IE or Firefox preferred)

– WebGoat -- a simple web application
containing numerous flaws and exercises to
exploit them

 Runs on (included) Apache Tomcat J2EE server

– WebScarab -- a web application testing proxy

 Instructor demo

 Class installation of both tools

Copyright© 2008 KRvW Associates, LLC

WebGoat

Copyright© 2008 KRvW Associates, LLC

Setting up WebGoat

 Run WebGoat on TCP port 8080

– From WebGoat folder (GUI or command line)

 Windows: webgoat_8080.bat

 OS X or Linux: ./webgoat.sh start8080

– (Will need to chmod +x webgoat.sh first)

 Verify in
browserhttp://localhost:8080/WebGoat/attack

At this point, WebGoat is running, but you’ll still need a
testing proxy to perform some attacks

Copyright© 2008 KRvW Associates, LLC

WebScarab

Copyright© 2008 KRvW Associates, LLC

Next, set up WebScarab

 Run WebScarab

– Default listener runs on TCP port 8008

– Ensure listener is running within WebScarab

 Configure proxy

– Set web browser proxy point to TCP port 8008
on 127.0.0.1 (localhost)

– Include proxy for localhost

– Connect once again to
http://localhost:8080/WebGoat/attack

Copyright© 2008 KRvW Associates, LLC

Troubleshooting

 Scarab not running

– Listener turned off or on wrong port

 Browser proxy not configured or misconfigured

– IE behaves differently than Firefox

 IE 7 often “misbehaves”

– Make sure proxy is set for localhost and 127.0.0.1

– Try using 127.0.0.1. (note the “.” at end)

– Turn off anti-phishing or “safe browsing” features

– Ensure JavaScript is running

– Try Firefox if you are an IE user, and vice versa

Copyright© 2008 KRvW Associates, LLC

WebGoat tips

 Report card shows overall progress

 Don’t be afraid to use the “hints” button

– Show cookies and parameters can also help

– Show java also helpful

– None of these are typical on real apps…

 Learn how to use it

 Fabulous learning tool

Familiarizing Goat and Scarab

 WebGoat

– Do “Web Basics”

exercise

– Try Hints and other

buttons

– Look at report card

 WebScarab

– Turn on intercepts

 Requests

 Responses

– Explore and

experiment

 Parsed vs. raw view

– Try editing a request

 Modify parameters

 Add/omit parameters

Copyright© 2008 KRvW Associates, LLC

Copyright© 2008 KRvW Associates, LLC

#1 Cross site scripting (“XSS”)

 Can occur whenever a
user can enter data into a
web app

– Consider all the ways a
user can get data to the
app

 When data is represented
in browser, “data” can be
dangerous

– Consider this user input
<script>

alert(document.cookie)

</script>

 Where can it happen?

– ANY data input

 Two forms of XSS

– Stored XSS

– Reflected XSS

 Two WebGoat
exercises to see for
yourself

Stored XSS

 Attacker inputs script
data on web app

– Forums, “Contact

Us” pages are prime

examples

– All data input must

be considered

 Victim accidentally
views data

– Forum message, user

profile, database field

 Can be years later

– Malicious payload

lies patiently in wait

– Victim can be

anywhere

Copyright© 2008 KRvW Associates, LLC

Copyright© 2008 KRvW Associates, LLC

Stored XSS exercise

Reflected XSS

 Attacker inserts
script data into web
app

 App immediately
“reflects” data back

– Search engines prime

example

– “String not found”

 Generally combined
with other delivery
mechanisms

– HTML formatted

spam most likely

– Image tags containing

search string as

HTML parameter

 Consider width=0

height=0 IMG SRC

Copyright© 2008 KRvW Associates, LLC

Copyright© 2008 KRvW Associates, LLC

Reflected XSS exercise

Copyright© 2008 KRvW Associates, LLC

XSS issues

 Why is this #1?

– Input validation

problems are

pervasive

– Focus on functional

spec

 Why is it such a big
deal?

– Highly powerful

attack

 Anything the user can
do, the attacker can do

– Take over session

– Install malware

– Copy/steal sensitive data

Reflected (via spam email)
attacks most common
technique by phishers

How bad is XSS?

 Perhaps the most (in)famous example is
the MySpace Samy virus

– XSS content in author’s page that added any

viewer as a friend whenever viewed

– In less than 24 hours, Samy had > 1 million

“friends”

– MySpace crashed and was down for 3+ days

Copyright© 2008 KRvW Associates, LLC

JavaScript Obfuscation

 Used to hide the real
intent of a JS

 Many (!) examples
exist

 Increasingly difficult
to detect

 Example
var a="Hello World!”;

function MsgBox(msg)

{

alert(msg+"\n"+a);

}

MsgBox("OK");

 Becomes
//language=jscript.encode

#@~^1wAAAA==-mD~|!X FF

XT']Jw6W%wa+*-X•Z'6v;wavw-X T-

aXF-avww6F wa+Z-a•W-a

8EBJwX!zJ~r-X*s'6*ArTI-

mDP|T6yFGyaq'|!X

qG+aZ$T6ZDi6EU^DkWU~|!a 8{y6+v{Z6

8Gya&*CV•DOc|!6yqGy6&3mT6yFF

a!,TXFD_|T6yF{+XF#IN,im!X+8G+X

v{!X 8{ X!,!X Dbp5j4AAA==^#~@

 (Source javascriptobfuscator.com)

Copyright© 2008 KRvW Associates, LLC

Copyright© 2009 KRvW Associates, LLC

Application vul scanners 1

Category of black box test tools that attempts
additional “application level” vul probes

– E.g., SQL injection, buffer overflows, cookie

manipulation, Javascript tampering

– Increasing in popularity among pen testers

– Useful at verifying (web) app is not vulnerable

to the most common attacks

– Moderately useful to developers

Copyright© 2009 KRvW Associates, LLC

Application vul scanners 3

Examples

– IBM/Watchfire’s Appscan, HP/SPI

Dynamics’ WebInspect, Nikto

Copyright© 2009 KRvW Associates, LLC

Nikto

 http://nikto.org

 Written in Perl

 Simple and low-level app scans

http://nikto.org

Copyright© 2009 KRvW Associates, LLC

AppScan

 http://www.watchfire.com (acquired by
IBM)

 Windows only

 Commercial application scanner

 We’ll look at eval copy

– Only able to scan http://demo.testfire.net

http://www.watchfire.com
http://demo.testfire.net

Copyright© 2009 KRvW Associates, LLC

Fuzzers 1

Growing field of app testing that involves
sending malformed data to/from app

– Tools, frameworks, and APIs are popping up

– “One size fits all” approach is highly
problematic

 Informed fuzzing vs. uninformed fuzzing

– Still early adoption among pen testers
(arguably)

– Dev knowledge is necessary to get most of it

Copyright© 2009 KRvW Associates, LLC

Fuzzers 2

– Fuzzing can and should be done from unit to entire app tests

– QA test team needs to acquire and learn

Examples

– OWASP’s JBroFuzz, PEACH, SPI Fuzzer, GPF, Codenomicon,

Mu Security, SPIKE, Sulley

“At Microsoft, about 20 to 25 percent of security bugs are found through fuzzing a product
before it is shipped”

Copyright© 2009 KRvW Associates, LLC

JBroFuzz

 http://www.owasp.org/index.php/Category
:OWASP_JBroFuzz

 Open source from OWASP

 Simplistic, but can fuzz

– Fields in any web app form

– URL guessing

 Project is still alpha-stage

http://www.owasp.org/index.php/Category:OWASP_JBroFuzz
http://www.owasp.org/index.php/Category:OWASP_JBroFuzz
http://www.owasp.org/index.php/Category:OWASP_JBroFuzz

Copyright© 2009 KRvW Associates, LLC

Static code analyzers 1

Review source code for common coding
bugs

– A bit of history

 1999: First examples appear from research projects

– E.g., ITS4, RATS, Flawfinder

– Tokenize input streams and perform rudimentary

signature analysis

– Accurate at finding strcpy() and the like, but lacking

context to really be useful

Copyright© 2009 KRvW Associates, LLC

Static code analyzers 2

 2001: “2nd generation” tools arrive

– E.g., Fortify, Ounce Labs, Coverity

– Parse and build abstract syntax tree for analysis

– Enables execution flow, data flow, etc., traces

– Significant leap forward, but much work remains

– Hundreds of common bugs in several languages

– Management tools for overseeing, measuring, and policy
enforcement

– Integration into popular IDEs

 Still, many are shelfware

Copyright© 2009 KRvW Associates, LLC

Static code analyzers 4

– Then do large scale analysis at project

completion

– Possibly using more than one tool set

Examples

– Fortify SCA, Ounce Labs Ounce 5, Coverity

Prevent, Klocwork

Copyright© 2009 KRvW Associates, LLC

Fortify SCA

 http://fortifysoftware.com

 Commercial source code analyzer

 Supports numerous platforms, languages,
compilers, and IDEs

 License caveats for this class

 Other features: security manager, rule
builder

http://fortifysoftware.com

The Challenge!

 Rules of the game

1. You may use WebScarab

2. All access to the Challenge app must be via

browser

3. You may NOT use command-line or other

OS interface

4. Questions are ok, but I will answer to

everyone

Copyright© 2008 KRvW Associates, LLC

Copyright© 2009 KRvW Associates, LLC

Kenneth R. van Wyk

KRvW Associates, LLC

Ken@KRvW.com

http://www.KRvW.com

mailto:Ken@KRvW.com
http://www.KRvW.com
http://www.KRvW.com

