
Dist r iNet

SECAPPDEV 2008
Security Architectures

Riccardo Scandariato

Wouter Joosen

Dist r iNet2

Architecture

ArchitectUsers Developers

Software

Architecture

Software

Product

Creates

Prescribes

Requirements

Prescribes

CreatesCreates

Dist r iNet3

Iterative
Software Development

Software
Concept

Requirements
Analysis

Design of
Architecture

Design and
Implement a

Version

Test and
Deliver the

Version

Introduces various
feedback loops

An idea why we ended up with
eXtreme Programming?

Dist r iNet4

Software Architecture
Sign off

Software
Concept

Preliminary
Requirements

Analysis

Design of
Architecture

Develop a
Version

Incorporate
Customer
Feedback

Deliver the
Version

Elicit
Customer
Feedback

Deliver Final
Version

Dist r iNet5

The play

o Act I ςPrologue
ÅIntroduction to Software Architectures

o Act II ςSecurity on stage
ÅSecurity Architectures with Patterns

o Final rehearsal
ÅA case study

Dist r iNet

Act I
Software Architectures

Dist r iNet7

Objectives

o What is Software Architecture?

o Why is Software Architecture important?

o How to Create Software Architecture?

o How to Evaluate a Software Architecture?

Dist r iNet8

Is this an architecture?

Document

Source

Document

Registry

Document

Consumer

Document

Repository

Boxes and arrows

Dist r iNet9

Definition of Software Architecture

The software architecture of a program or
computing system is the structure or

structuresof the system, which comprise
software elements, the externally visible

propertiesof those elements, and the
relationshipsamong them

Dist r iNet10

Other Definitions

ά!ǊŎƘƛǘŜŎǘǳǊŜ ƛǎ ǘƘŜ ŦǳƴŘŀƳŜƴǘŀƭ ƻǊƎŀƴƛȊŀǘƛƻƴ ƻŦ ŀ
system embodied in its components, their
relationships to each other and to the environment
and the principles guiding its design and
ŜǾƻƭǳǘƛƻƴέώL999 мптмϐ

Maier, M. W., Emery, D., and Hilliard, R. 2004.
ANSI/IEEE 1471 and systems engineering. Syst.
Eng.7, 3 (Sep. 2004), 257-270

What?

Dist r iNet11

Importance of architecture
Reconcilestakeholders

Dist r iNet12

Importance of architecture
Impact on requirements

Twin Peaks

Dist r iNet13

Creating software architectures

o Architectures are largely influenced by
software qualities(non functional
requirements)

o Software qualities
ÅPerformance

ÅModifiability

ÅAvailability

ÅSecurity

Dist r iNet1414

Creating SA
Quality Models

o How achieve software quality?
ÅUnderstand what quality means: quality model

ÅVerify that quality is achieved: measure

o Quality Model
ÅISO9126, Boehm, etc

Dist r iNet1515

Creating SA
Quality Model

Product
Operation

Product
revision

Usability

Reliability

Efficiency

Reusability

Maintainab
ility

Portability

Testability

Communicativeness

Accuracy

Consistency

Device Efficiency

Accessibility

Completeness

Structuredness

Conciseness

Device
Independence

Legibility

Self-descriptiveness

Traceability

METRICS

Important High
Level Quality Factors

Low Level Criteria

Dist r iNet16

Creating SA
Attribute-driven design

ωA recursive decompositionprocess where, at
each stage, tacticsand architectural patterns
are chosen to satisfy a set of quality scenarios
and then functionality is allocated to
instantiate the module types provided by the
pattern.

Dist r iNet17

Creating SA
Quality attribute scenario

Source:
Developer

Stimulus:
Wishes to
change the UI

Artifact:
Code

Environment:
At design time

Response:
Modification
is made with no
side effects

Response
measure:
In 3 hours

Tactics to
Control

response

Dist r iNet18

Creating SA
Tactics & patterns

Bass, Clements,

Kazman
Qualities

Security
tactics

Χ

Resisting Attacks
- Authenticate Users
- Authorize Users
- Maintain Data

Confidentiality
- Maintain Integrity
- Limit Exposure
- Limit Access

Detecting
Attacks
- Intrusion
Detection

Recovering
from Attacks
Restoration:
(see Availability)

Identification:
- Audit trail

Pattern

Dist r iNet19

Creating SA
Algorithm

1. Choose the module to decompose

2. Refine the module
a) Choose architectural drivers

b) Choose architectural patterns (from strategy)

c) Instantiate child modules and allocate
functionality (from use cases). Document in
multiple views

d) Gap analysis

3. Repeat

Dist r iNet20

Documenting SA
Architectural Views

o Views on human body J

o An architectural view is a simplified
description (abstraction) of a system
ÅFrom a particular perspective

ÅCovering particular concerns, and

ÅOmitting entities that are not relevant to this
perspective

Dist r iNet21

Documenting SA
Architectural Views

o At least
ÅDecomposition

ÅInteraction

ÅDeployment

o Mapping between views
ÅImportant

ÅHard

Dist r iNet22

Documenting SA
Decomposition

Dist r iNet23

Documenting SA
Interaction

Dist r iNet24

Documenting SA
Deployment

Vocal

gateway

Cisco 3640

Application

Server

BarFoo

LAN connection

LAN

Client
Client

Device

Server

Dist r iNet25

Evaluating SA
Motivation

o/ǊŜŀǘƛƴƎ ǘƘŜ άǊƛƎƘǘέ ǎȅǎǘŜƳ ŦƻǊ ŀ ǎŜǘ ƻŦ ƎƛǾŜƴ
requirements is still a general problem in
software system development [SEI]

Analyze
Business

Goals
Architect

Require
ments

Design
Archit
ecture

Implement
System
Design

Test
System

Impleme
ntation

Syste
m

Mismatch

Dist r iNet26

Evaluating SA
Boehm costs of change

Dist r iNet27

Evaluating SA
Motivation

P. G. Neumann, Computer-Related Risks. Addison-Wesley, 1995

Dist r iNet28

Evaluating SA
Output

o Is this architecture suitablefor the system for
which it was designed?
ÅResulting system will meet quality goals

ÅSystem can be built using available resources

o Architectural risks
ÅWhat are the weak points of the architecture?

o Architectural trade-offs
ÅChoices are made explicit

Dist r iNet29

Evaluating SA
²ƘƻΩǎ ƛƴǾƻƭǾŜŘΚ

o Evaluation Team

ÅTeam leader

ÅEvaluation leader

ÅScenario Scribe

ÅProceedings Scribe

ÅTimekeeper

ÅQuestioner

o Customer Roles

ÅDecision Maker

ÅSoftware Architect

ÅOther stakeholders

Dist r iNet30

Evaluating SA
Architectural approaches

o Examples
ÅUsed a layered architecture

ÅUse of distributed data

o I.e., architectural styles (patterns)

o Examples in security
ÅUse of interception

ÅUse of process separation

ÅUse of single access point

Dist r iNet31

Evaluating SA
Elicit and prioritize scenarios

Importance

Difficulty

H

H

M

M

L

L

Do these first

If time permits, do these

Do not do these

Dist r iNet32

Evaluating SA
Analyze

Scenario A8.1 Search, browse, and order submission is
down less than 1 hour/week

Attribute Availability

Architectural approaches Risk Tradeoff Nonrisk

AD9 Backup copy of database on tape
(not disk)

R9

R9. Recovery from tape can take more than 1 hour in case of large amount of

data

Dist r iNet

Act II
Security Architectures

Dist r iNet34

Objectives

o What Are Security Patterns?

o How to systematically bridge from security
requirements (problem domain) to security-
aware software architecture (solution
domain)?

Dist r iNet35

Security patterns

o ! όǎŜŎǳǊƛǘȅύ ǇŀǘǘŜǊƴ ŘŜǎŎǊƛōŜǎΧ ώ5ƻǳƎ [Ŝŀϐ

Åa single kind of (security) problem

Åthe solution as a constructible software entity

Ådesign steps for constructing the solution

o Potential helpful tools to implement security

Well-known (and sound) solution for a recurring security
problem, whose pros & cons are known in advance

Dist r iNet36

Example: Audit Interceptor

o Stucture

Audit Eve nt Catalog

Audit Inte rce ptor

Audit Log

Targe tClie nt send s forwa rd s

uses log s

Dist r iNet37

Example: Audit Interceptor

o Sequence Diagram
: Audit Ev ent Catalog: Audit Interce ptor : Audit Log : Targe t: Clie nt

loo kup2:

log3:

forwa rd4:

loo kup6:

log7:

8:

reply5:

request1:

Dist r iNet38

Existing inventories

o Markus Schumacher, et
al, Security Patterns:
Integrating Security and
Systems Engineering

o Christopher Steel, et al,
Applied J2EE Security
Patterns: Architectural
Patterns and Best
Practices

Dist r iNet39

Security patterns landscape
Data set

o 38 publications

o 218 patterns

o 1996-2006

trigger

inflated

expectations

disillusion

enlightenmentAbstraction level
Overlaps

Quality issues
No structure

Dist r iNet40

Security patterns landscape
Quality

o Grade pattern elements
ÅProblem

ÅStructure

ÅBehavior

ÅConsequences

ÅExample

Q = Ɇ wi

si

max

Dist r iNet41

Problems & our approach
o Quality & quantity:

ÅNot all published patterns are actual patterns

ÅOverlapping/duplicate descriptions

ÅDescriptions are lacking in detail

ÅEssentially: too many unstructured patterns

o How to choose and implement the right pattern?

ÅΧ ǊŜŀŘƛƴƎ ǘƘŜƳ ŀƭƭΚ

Ádone that, not recommendable ;)

o Our approach:

ÅCollect good patterns in a structured inventory

Å Integrate selection in software engineering process

Dist r iNet42

Security patterns catalog
Overview

o Abstraction level

ÅCategorization

o Quality

ÅTemplate

o Overlaps

ÅGrouping

o No structure

ÅInter-pattern relations

o Support for
methodology

ÅSecurity objectives

ÅTrade-off labels

Dist r iNet43

Security patterns catalog
Categorization

Locality principle

Code required

Dist r iNet44

Security patterns catalog
Relations

Depends on

Conflicts with

Alternative

Benefits from

Impairs

Dist r iNet45

Security patterns catalog
Relations ςIn practice

A,C

I

B

B

D

DDemilitarized Zone

Secure Pipe

Load Balancer

Audit Interceptor

Authentication Enforcer

Limited View

Full View with Errors

System

Application Architecture

Application Design

A,C

B

Dist r iNet46

Data Confidentiality

Application Confidentiality

Storage Confidentiality

Transmission Confidentiality

Authorization À

Confidentiality

Non-repudiation

Auditing

Requires authentication ÿ

Accountability

Data Integrity

Application Integrity

Storage Integrity

Transmission Integrity

Authorization À

Authorization À

Integrity

Anonymity

Privacy

Availability

Requiresauthentication ÿ

Ϟ !ǳǘƘƻǊƛȊŀǘƛƻƴ ϟ !ǳǘƘŜƴǘƛŎŀǘƛƻƴ

Security patterns catalog
Objectives

Dist r iNet47

Security patternscatalog
Objectives ςIn practice

Dist r iNet48

B
u

s
in

e
ss

Security patterns catalog
Trade-off labels

S
e

cu
rity

O
b

je
c
tive

s
C

C
IS

O
 9

1
2

6

ςDependability

ςPortability

ςMaintainability

ςPerformance

ςUsability

ςManageability

ςAuditability

ςConfidentiality

ςIntegrity

ςAccountability

ςAvailability

ςCost

Denote strong points and weaknesses, e.g. Audit Interceptor:

- Performance

+ Accountability

Dist r iNet49

Security patterns catalog
Bringing it togetherPattern Name

Intent

Also known as (optional)

Applicability

Security objective

Labels

Relationships

Å Dependencies

Å Impairments

Å Conflicts

Å Benefits

Å Alternatives

1. Problem

Å Forces

2. Example

3. Solution

Å Structure

Å Dynamics

Å Participants

Å Collaborations

4. Implementation (optional)

5. Pitfalls (optional)

6. Consequences

7. Related patterns

8. Known uses

o Purpose: uniformly
describing patterns

o Ensures that all
relevant data is
included

o Summarizes
information for quick
selection

Dist r iNet50

Attribute-driven design

Pattern

Main Security
Objective

Performance

Availability

Security

Labels:

Bass, Clements,

Kazman

Our approachQualities

Security
tactics

Χ

Resisting Attacks
- Authenticate Users
- Authorize Users
- Maintain Data

Confidentiality
- Maintain Integrity
- Limit Exposure
- Limit Access

Detecting
Attacks
- Intrusion
Detection

Recovering
from Attacks
Restoration:
(see Availability)

Identification:
- Audit trail

Pattern

Dist r iNet51

Methodology
Analysis

Domain
model

Functional
Requirements

Analysis

Architecture

Security Requirements

ÅUsing misuse cases
ÅCategorized by security

objective(s)

