Engineering Requirements for
High-Assurance Applications

Axel van Lamsweerde

University of Louvain
B-1348 Louvain-la-Neuve

avi@info.ucl.ac.be

SecappDev ‘08, Leuven, March 2008

High-Assurance Applications (HA)

McLean'95

Applications where compelling evidence is required
that the system delivers its services in a manner that
satisfies certain critical properties such as:

safety,
security,
survivability,

fault tolerance

High-Assurance Applications (2)

Survivability: ability of a system to fulfill its mission
in a timely manner even in the presence of (external)
incidents or attacks

Fault tolerance: ability to avoid or mitigate failure even in
case of fault

Fault: (internal) cause of failure

Failure: deviation between actual & specified behavior

HA applications: problems & challenges

¢ The later software defects are found,
the more expensive & dangerous they are ...

U

- Start caring for high assurance early, i.e. at
requirements engineering time

- Preserve high assurance at every transition to
downstream artefacts (architecture, test data, code)

HA applications: problems & challenges (2)

¢ A posteriori detection & fix of software defects
may endlessly generate other defects ...

U

- Adopt a constructive approach where
high assurance is granted by consitruction

HA applications: problems & challenges (3)

¢ High assurance requires much stronger level of
confidence ...

U

- Stronger confidence requires more formal elaboration
& analysis (supported by tools)

- Usability at requirements engineering time requires
lightweight techniques

Requirements engineering for HA applications:
problems & challenges

¢ Requirements Engineering (RE) #
translating informal requirements into + formal model

¢ Requirements are not there, you need to ...

- elicit them,

- evaluate them,

- structure & document them,
- analyze them,

- modify them

RE: the WHY, WHAT, WHO dimensions

operationalization

A 4

requirements,
assumptions

responsibility
assignment

WHO?

RE: an iterative process

alternative proposals

domain analysis
& elicitation

<

A

evaluation
& negotiation

consolidated
requirements

validation
& verification

start

v

>
agreed

requirements

specification
& documentation

documented requirements

Requirements engineering is hard ...

¢ System = software + environment (possibly malicious)

¢ Involves 2 systems: system-as-is, system-to-be

¢ Ranges from high-level, strategic objectives
to detailed, technical requirements

¢ Requires evaluation of alternatives
¢ Raises conflicting concerns

¢ Requires anticipation of unexpected behaviors
(for requirements completeness, system robustness)

Security engineering: problem space vs. solution space

Software layers

e-shopping Application %
remote file access, SSH, SSL, ... | System / Languages
authentication, key exchange | Protocols

encryption, signature | Crypto

Security guarantee Applic
Syst/ Lang
Protocols

Crypto

Focus of these lectures

¢ Critical properties in HA systems
o In particular: security at upper, application layer

¢ Application is secure iff it satisfies a "complete” set
of security goals

- about confidentiality, integrity, availability, privacy, ...

¢ Necessary condition for application security:

security goals must be made explicit, precise,
complete, adequate, non-conflicting

¢h
A RE method for HA applications should be ...

- Goal-oriented: to ensure that requirements satisfy
system objectives -- notably, safety, security goals

- Incremental: for early analysis of partial models
- Constructive: for analyst guidance & confidence

- Model-based: for abstraction & structure
Multiple models: for capturing multiple facets

- Mix declarative and operational styles as needed

- Formal when and where needed, but /ightweight

Course outline

¢ Goal-oriented RE for high-assurance applications
- Modeling goals, objects, agents, operations, behaviors
- A goal-oriented model building method in action
- Obstacle analysis for high assurance
- Formal reasoning about models

¢ Engineering security requirements
- Security goals and their specification
- Threat analysis for model consolidation
- Analyzing conflicts among security goals
- Model checking against confidentiality requirements

What models :

View Tnnis

B = B B 4 @8 L 62 @[l 5 |@E|2 B if & &

SafeTransportation
Al

IDPRUURD | EOODPT

o
S

Poel e

MoTrainsOn
Same Block

NoTrainCollision

ZI

WorstCaseStopping
DistanceMaintained

(Boal) NoTrainsOn Same
Blocl diagram

DoorClosed WhileMoving

v

DoorsCloscdiFFnonZeroSpeod
Veasure

Zoom: o |l %

BlockSpeedLimited

MovinglFFronZeroSpeed

rainController

|| mosiiea

| R o1 52w

les

Agents, responsibili

| [specs,
File gun View Tools Documert Vndows Help
M= [F(<e gD 8 el al® e A S 8o 3 P 2 20m 5] %]

[i2L. A=ty Traincontroller iResponsibiy Diagram A-FI

Warning TrainStappin

=]
B
un When Gosignai
BlockSpeedLimited

|nfoCompanies Athextsto

P i=e IDEQURN

StopSignal IFF TrainOnBlo:

TrainArivingDis

SlosedIFFnanZeroSpe ed
Measure

L = T
s mRE"

Span sivenes st

5 [T oo T

starc

| o e 2 & || Sekrausioeus

|[=] in,/ TrainSys.

scrosart vamervant - e..|

N PEW Y G- 5]

st

ot @ 5 Gy || Srevsreess [T TrainSys... [S]Merosoft Ponerbont - 5. .| I

A AU OEGL), a5

Objects

(51|

Fle Et View Toos Document tindows Help
o= % & 8|2 |0 a|@|a(BE 4 & & % 3¢ 55 [Zoom: fran | %

oy

Clas<Di

Properties.

o Ba
4

Dox
Dooreci=|

jagram [

Name |

Walue

o

Boowew 3 DP QL LN EOOOPD

[EL ClassDiagram Akre

DoorsClosedlFFnonZeroSpeed

Measure

MeasuredSpeed : Real
doorsState : String

NoTrainsOn Same Block

BlockSpeedLimited

= extBlock —

oiced 7o |

StationBlock

Operations

ith advanced features

=181x|
Documert widows el

B a9 @ Bl %X 0 8ld e haas
[Package vView | (HcdeINiSwA] |
=

[EL (Goai) Operationaiization A-F1

SourceDosumerts
(Agent) TrainCortroller (Responsibility Diag
(Agert) TrainDriver (Responsibilty Diagrar
(Goal) FastJourney diagram
-

(Goal) High-level goals

(0al) MoTrainsOn Same Block disgram

(Goal) Operationalization

oD Qo e

(Goal) SafetyGoals

(Obstacle) Obstacles to train stops

ClassDiagram

Fastuourmey diagram (Test Explanstion)
L7 BiockSpeedLimited
aiockSheed mted “Concems" Train

© ' BlockSpescLited "Responsibity” TrainG

DoorClosed
WhileMoving

OpenDoors

[FormaiRegre ofto Openboors

© & DoorinsectieNoving “Refinement: o
&7 DoorsClosediFFnon ZeroSpesdMeasure
7oDoorsClossclFFnonZeroSpesiticasire "<

© '@ DoorsClosedFFnonZerospeediteasurs 'R
o Driverlnesponsive

e

o0 9 F 3100000000 LY E0O0ET

— Ve
FermaReqpos:

Formeirecpre b Siote = Sioppect [e]
Reapert

Rectra

] [iwosiies

SR start \

| @ 5 5y || Seraust-reot [T Bspecs/train/Trainsys... [Microsoft Pawerpoint - [R...

[Microsaft PawerPaint - [R... | $ghFAUST-REGH I[=1 in/TrainSys...

dstare||| 11 @ 1 3 ||

What models ? (2)

Interaction scenarios Behaviors

-Positive Scenario

Train Controller Train Actuator/Sensor Passenger

start

alarm pressed

alarm propagated
emergency stop
emergency open [

dlose

Hazards | Threats

B2 i & & x 3¢ B [Zoom: oo

TrainStops IF StopSlgnaI

NoStopAtStopSignal

TN SE

SignalNotVisible BrakeSystemDown |

RegularResponsivenessCheck

4

7

The goal model

¢ Intentional view of the system being modeled

¢ Goal = objective to be achieved by system ...
- prescriptive statement of intent about system
- system (as-is, to-be) = software + environment

“E-money shall be paid only if sufficient e-purse balance”

¢ ... unlike domain property ...

- descriptive statement about environment
“Paid money is no longer in purse”

/1

7

Goals in a goal model have different
granularities & abstraction levels

¢ Higher-level, coarser-grained goals ...
strategic, global, business-specific

“Cash-free payment supported anywhere anytime”

¢ Lower-level, finer-grained goals ...
technical, local, design-specific

“E-purses shall have a max capacity of X euros”

74
2 Goals in a goal model are of different types

¢ Behavioral goals prescribe maximal sets of admissible
system behaviors
Achieve [TargetCondition]:
if CurrentCondition then sooner-or-later TargetCondition
Achieve [E-moneyMovedAsNeeded]

Maintain [GoodCond/ition]
always (if CurrentCondition then GoodCondition)
Maintain [E-moneyAccuratelyStored]

Avord [BadCondition]:
never (if CurrentCondition then BadCondition)
Avoid [E-purseBalanceDisclosedToNonOwners]

Behavioral goals prescribe intended behaviors
declaratively

SufficientBalance

/ eMoneyPaid Onlylf/

4
‘ Goals in a goal model are of different types (2)

¢ Soft goals prescribe preferences among alternative
system behaviors

- cannot be established in a clear-cut sense

- used to compare alternative options

Improve, Increase, Reduce, ... [TargetCondition]
Reduce [BankClerkWorkload]

J

Achieve [ePurseLoadedAtATM]

preferred over
Achieve [ePurselLoadedAtBank]

/1

Goals in a goal model are of different categories

¢ Functional goals state intent behind system services

- Used to build operational models: use cases, state
machines, task workflows, ...

EmoneyMovedFromEpurseToPayTerminal

¢ Quality goals constrain quality of service (“non-
functional goals")

- About security, safety, accuracy, usability, cost,
performance, interoperability, etc.
Maintain [eMoneyStoredAccurately], Improve [PurseUsability]
- Some are softgoals (e.g. “ility" goals)
- Often conflicting

The goal model shows contribution links

/ Effective E-PurseSystem /
&
~

eMoneyStored eMoneyMovedAsNeeded BalanceKnown
/ Accurately // LA // /

__________________ refinement / g\
/3) _ B abstraction
FromBank / / FromPurseTo /FromPayTerminal/
ToPurse PayTerminaI ToBank
ePurse / o

lternatives / nserte mountPald Cancelled
ePurse [/ /ePurse Amoun Amount If Sufficient//If Insufficien
Loaded / / Loaded KﬂOWﬂ Agreed Balance Balance

atBank atATM

Refining a security soft goal into behavioral goals

/ Reduce [RiskOfAbuse]/

Maintain [Balance
BetweenLimits]

—
Maintain [Balance /| Maintain [Balance
LowerBound] UpperBound]

/ OnEpurse / / OnPayTerminal /

%
Goal specifications annotate the goal model

Goal Achieve [AmountPaid If SufficientBalance]
Def A payment shall be done for some input amount through e-
purse debit and pay terminal credit if the amount is OK-ed by the
payer and the e-purse balance is higher or equal to this amount

[FormalSpec V ep: e-Purse, pterm: PayTerminal, p: Payer
Inserted (ep, p, pterm) A OK (pterm.InputAmount, p)

/ A pterm.InputAmount £ ep.Balance
.i = 0 (pterm.Balance = e pterm.Balance + pterm.InputAmount

! A ep.Balance = e ep.Balance - pterm.InputAmount)]
\
v [Priority Highest]
\
o

Optional formalization in rea/-time temporal logic
(“next”, “always", “sooner-or-later”, ...) for formal reasoning

ﬂ Goal satisfaction requires agent cooperation

¢ Agent = role (rather than individual)
responsible for goal satisfaction

Achieve [eMoneyMovedFromPurseToPayTerminal] <

Payee, Payer, ePurse, PayTerminal

¢ Agent types:

- software
(software-to-be, legacy software, COTS components,
foreign components)

- devices (sensors, actuators, ...)

- humans playing specific roles

ﬂ Goal satisfaction requires agent cooperation (2)

¢ Finer-grained goal = fewer agents required
for goal satisfaction

¢ Requirement = goal assigned to single agent in

software-to-be
Achieve [AmountDebitedIfSufficientBalance]
< ePurse
Achieve [AmountCreditedIfDebited]
< PayTerminal

¢ Expectation = goal assigned to single agent in
environment
Achieve [AmountAgreed] <> Payer

Goals are refined until single responsibilities
can be assigned

/ Effective E-PurseSystem /
\
/ eMoneyStored / / eMoneyMovedAsNeeded / / BaIanceKnown /

Accurately ;\ 6\

FromBank FromPurseTo /Fromf’ayTerminaI/
ToPurse PayTerminal ToBank

ePurse
nserte Amoun

t// mount/ Ar_n(_)untPaidIf/

cPurse |/ePurse Known Agreed/ /SufficientBalance
Loaded //Loaded CS /$\
atBank/| atATM / / Debited// Credited /

: E Payes> T 5
< Haky environment agent < PayTerminal >

4

WHY are goals so important ?

¢ Abstraction level for strategic stakeholders
(decision makers)

¢ Force environment assumptions to be made explicit

¢ Criterion for requirements completeness

REQ is complete if for all &
{REQ, EXPECT, Dom} |- &

¢ Criterion for requirements relevance

r in REQ is pertinent if for some &
risused in {REQ, EXPECT, Dom} |- &

High assurance requires satisfaction arguments

¢ Informal argument at least, formal argument at best
RED|l— G
" in view of properties D of the domain,

the requirements R will achieve goals G
under expectations E "

R1: amount debited from e-purse

R2: same amount credited to pay terminal

D: amount paid if debited from e-purse and credited to terminal
E: amount agreed by payer

|— G: amount agreed and paid

¢ A goal model supports satisfaction arguments &
traceability links for free

What models :

View Tnnis

IDPRUURD | EOODPT

o
S

Poel e

B = B B 4 @8 L 62 @[l 5 |@E|2 B if & &

NoTrainCollision
ZI

MoTrainsOn
Same Block

(Boal) NoTrainsOn Same
Blocl diagram

WorstCaseStopping
DistanceMaintained

SafeTransportation
Al

DoorClosed WhileMoving

v

Veasure

DoorsCloscdiFFnonZeroSpeod

— e Ect Mew Ioois Document Windows Help

Mmoe @< | n e[d e0

Agents & responsi

[i2L. A=ty Traincontroller iResponsibiy Diagram A-FI

BlockSpeedLimited

MovinglFFronZeroSpeed

P i=e IDEQURN

StopSignal IFF TrainOnBlo:

Measure

TrainController

|| mosiiea

| R oo L

Warning TrainStappin

bilities

|nfoCompanies Athextsto

o | 2| B e R e 38 @ O [Zoom 162] %

F astRun When GoSignal
BlockSpesdLimited

TrainArivingDis

SlosedIFFnanZeroSpe ed

) | M| <+ o T

starc

|| e e 2 [] Sbrausireus

¢ 8850 oM hsart |

Si[specs.

/train/ TrainSystem-REO4.0b] - Cediti

ot @ 5 Gy || Srevsreess [T TrainSys... [S]Merosoft Ponerbont - 5. .| I

A AU OEGL), a5

(51|

Fle Eof View Tools Document wndows I
B = % & 8l2 @0 a|& 5 | Zoom: 100 | %

raboors
o % oo

,

ClassDiagrarm [

Properties.

o Ba
4

[EL ClassDiagram Akre

Boowew 3 DP QL LN EOOOPD

orsc—

Name |

Walue

o

DoorsClosedlFFnonZeroSpeed
NMeasure

MeasuredSpeed : Real
doorsState : String

NoTrainsOn Same Block

Documert Windows Help

Operations

ith advanced features

—[51x

B <9 @ Bl (%X b 8|l e
«

I

Package View [Model View | 3
=

SourceDosumerts
(Agent) TrainCortroller (Responsibility Diag
(Agert) TrainDriver (Responsibilty Diagrar
(Goal) FastJourney diagram
-

(Goal) High-level goals

(0al) MoTrainsOn Same Block disgram

(Goal) Operationalization

oD Qo e

(Goal) SafetyGoals

(Obstacle) Obstacles to train stops

ClassDiagram

Fastuourmey diagram (Test Explanstion)
L7 BiockSpeedLimited
aiockSheed mted “Concems" Train

© ' BlockSpescLited "Responsibity” TrainG

BlockSpeedLimited

© & DoorinsectieNoving “Refinement: o
&7 DoorsClosediFFnon ZeroSpesdMeasure
7oDoorsClossclFFnonZeroSpesiticasire "<

© '@ DoorsClosedFFnonZerospeediteasurs 'R
o Driverlnesponsive

oiced 7o |

e

StationBlock

o0 9 F 3100000000 LY E0O0ET

iame value
FormalfeoPost

FormaleoPre b State = ‘Stopped’
Reapost

Rearig

Reapre

[EL (Goai) Operationaiization A-F1

DoorClosed
WhileMoving

OpenDoors

[FormaiRegre ofto Openboors

s

iodified

Mstar

|| @ @ 5 & || Shravsrreos [T spece/train/Trainsys.. [Slcrosoft Fowsrpaint - (..

dstare||| 11 @ 1 3 ||

ricrosoft PowerPoint - [R... | $ghFAUST-REDH

= in/TrainSys...

Modeling objects

¢ Structural view of the system being modeled

¢ Object = thing of interest in the system
whose instances ...
- share similar features (attributes, associations)

- can be distinctly identified
- have specific behavior from state to state

¢ Object attributes/associations yield state variables

¢ Object specializations (at meta level):
- entity: autonomous object
- association: object dependent on objects it links
- event: instantaneous object
- agent: active object, controls behaviors

The structure of objects is modeled using UML

ltem
Price
*
Payer |paysror PaidFor | Payee
Money 1 ~_ 1| Money
1 : 1
. owns !
Payment
Purse Amo?J/nt Holds

| 0..1

ePurse 1Fror2 ePayment To - PayTerminal
L1 0..1
Balance P Track# Balance
! InputAmount
AgreedAmount

in any system state, an e-purse may be
involved in at least O and at most 1 e-payment

Object specifications annotate the object model

Relationship Payment
Def Condition for an item to be sold by a payee to a payer

., Dominvar An item is paid if its price is debited from the payee

I/ and credited to the payer

[FormalSpec V it: Iltem, pyr: Payer, pye: Payee

/

I

I

.\« Payment (pyr, pye, it) = pyr.Money = e pyr.Money - it.Price

i A pye.Money = e pye. Money + it.Price]

\
\
‘l

‘l
\

domain properties

I
I
l
1

What models :

Goals Agents & responsibilities

Views Tonis [specs, 7]
B =B B¢ (% 6 6|2 @[l g|&[3 & & £ 5k Zoom: heo | % Flo Ean view [ools Document vundows Heip
‘ ‘ ‘ . 1] M= [F(<e gD 8 el al® e A S 8o 3 P 2 20m 5] %]

[i2L. A=ty Traincontroller iResponsibiy Diagram A-FI

un When Gosignai
-

SafeTransportation
Al

()
NoTrainCollision DoorClosed WhileMoving BlockSpeedLimited

ZIs v

BlockSpesdLimited

IDPRUURD | EOODPT

® ® > .

o
S

NoTrainsOn RS S EEER DoorsCloscdIFFnonZeroSpocd T e
Same Block DistanceMaintained NMSESTIS!

(Boal) NoTrainsOn Same
Blocl diagram

P i=e IDEQURN

Poel e

StopSignal IFF TrainOnBlo: TrainArivingDis

ﬁm 5 pansivenessC
TrainController

| [votea | IR orom C [- -
Shocarc||] @ 2 2 || Sebravsiwe ([T topecs tramn Tramsysn. [lierosort voneron - (e | ¢ 8850 oM son ||| (1 @ 1 I AW O, s

Objects

(51|

Fle Edt ¥iew Tools Document Windaws Help

DS @0 B|a 2% 06 0(320a@aBEfeE % 5 | Zoom: fran | %
4

N [EL ClassDiagram At-F8 B B a9 @ Bl %X 0 8ld e haas
Package View «
(Package viere | Modalsiew | H B (Gomh Operationaization, AE.F1
=]
NoTrainsOn Same Block
(Gosl) Fastiourney disgram
(Goai) FunctanaiGass

L Goal i evel gosts
BlockSpeedLimited o e S Eiock dogram
. Gomn Onerctionization
oont) o e

(Goal) SafetyGosls
(Obstacle) Obstacles 1o train stops:

ClassDiagram
Fastlourney diagram (Text Explantion)

L7 BiockSpeedLimited
aiockSheed mted “Concems" Train
© ' BlockSpescLited "Responsibity” TrainG

- & 3, Daoriosed Whietoving "Refinement” Dox
BlockSpeed : Real J‘ D DoorsClosediFFnon ZeroSpesdiizastre

th advanced features —[51x

File Edit Documert Windows Help

SeuresDocumerts
CAgert) TrainCortroller (Responsiblty Diat
(Agert) TrainDriver (Responisibilty Diagrar

DoorClosed
WhileMoving

DoorsClosedlFFnonZeroSpeed
NMeasure

D> OpenDoors

MeasuredSpeed : Real

Boores 3 DP QLY L EOCDO

doorsState : String ZraDoorsClosediFF nonZeroSpesdieasure 'C)
& '® DoorsCloscdFFnonZeraSpecdheastre 'R
= DriverUnresponsive

‘ZaDoars:

©'® Doorsci=|
>

ClassDiagrarm [

e

StationBlock

o0 9 F 3100000000 LY E0O0ET

Properties | FormalkeqPost
Name | Walue
ockears [Regpost

[] [iwosiies s [

SAstart|| 1] @ S &y || Sebravstrens T [epecs/train/ Trainsys... icrasoft PowerPoint - [R.. 48,9550 0 G Astare]|| 1 @ & ||

[Microsaft PawerPaint - [R... | $ghFAUST-REGH I[=1 in/TrainSys...

Modeling agents

¢ Responsibility view of the system being modeled:
who is in charge of what
¢ Agent:
- (Role rather than individual -- software, device, human)

- Active object: monitors & controls state variables
(through operations on attrib, assoc)

- Runs concurrently with others

- Agent responsible for goal =
must restrict system behaviors
goal must be realizable by agent

ﬂ Goal realizability by an agent

¢ A goal is realizable by an agent /ff its monitoring &
control capabilities enable it/her to satisfy the goal in
view of known domain properties (without more
restrictions than required by 6)

¢ A goal is unrealizable by an agent because of ...
- lack of monitorability of variables to be evaluated
- lack of controllability of variables to be constrained
- reference to future
- conditional unsatisfiability (aka conflict with other goals)
- unbounded achievement (liveness property)

Goal realizability & agent capabilities: examples

AgreedAmount / \ ePurse Balance
= —\ ePurse)= g

Monitors 6'0/; trols

Example 1: Realizable by ePurse

/AgreedAmount < ep.Balance = ep.Balance = ... - /

ePurse >

Example 2: Not realizable by ePurse

pterm.InputAmount < ep.Balance /
= pterm.Balance = ... + ... Aep.Balance = ... - ...

\)><< ePurse >

Modeling agents: responsibility view

Payee < Pay >
Authenticated | Ter'mmal

Agreed/.\moun‘r R Tr-ansac‘rlonCancelled
Credited ece|p‘r
Generated If InsufficientBalance

Alternative agent assignments define
alternative system boundaries

Unload
Controller

EmoneyUnloaded OR-Assignment
FromPayTerminalToBank
% Bank
Clerk

Modeling agents: interface view

¢ Interface among agents =

monitored/controlled state variables
(attributes/relationships from object model)

¢ Interface view = context diagram

variables monitored by agl
& controlled by ag2

variables controlled by agl]
& monitored by ag2

Context diagram: example

pt.Balance

AgreedAmount
J InputAmount

AgreedAmount

ep.Balance

What models :

Goals Agents & responsibilities

View Tnais T]
;™ e — B BT T D ED
| | | ! (=] N I T N I W= - O - A e

[i2L. A=ty Traincontroller iResponsibiy Diagram A-FI

Y ucimun wien Gosigna i
| Fun When GoSignal
WarningTrainStappin = |

SafeTransportation
Al

()
NoTrainCollision DoorClosed WhileMoving BlockSpeedLimited

ZIs v

BlockSpesdLimited

IDPRUURD | EOODPT

® ® > .

o
S

Poel e

NoTrainsOn RS S EEER DoorsCloscdIFFnonZeroSpocd T e
Same Block DistanceMaintained NMSESTIS!

(Boal) NoTrainsOn Same
Blocl diagram

P i=e IDEQURN

StopSignal IFF TrainOnBlo: TrainArivingDis

SlosedIFFnanZeroSpe ed
Measure

TrainController

|| miocinos | MR ot oam__|¢, C

L
starc

[IETETR] v o TR
ol @ G Gy || Seraustreos [epacsztrain/ Trainsys. SR [REW ¥ Fol: [+~

| e 2 || Srausikevs = i/ Tramsys. ucrosoft powerboint - [H... | R W] [i start

Objects

(51|

Fle Edt ¥iew Tools Document Windaws Help

B =@ B|laa¥n 0l ellg@aEde sk 2 | Zoom: 150] % Eo ED Yo
4

il i -, o
I [EL ClassDiagram at-Fe =] S B B[2% B 2 ¢ | h o ®ma
Package View «
(Package viere | Modalsiew | B (Gomh Operationaization, AE.F1
=]
NoTrainsOn Same Block
(Gosl) Fastiourney disgram
(Goai) FunctanaiGass

L Goal i evel gosts
BlockSpeedLimited o e S Eiock dogram
. Gomn Onerctionization
oont) o e

(Goal) SafetyGosls
(Obstacle) Obstacles 1o train stops:

ClassDiagram
Fastlourney diagram (Text Explantion)

L7 BiockSpeedLimited
aiockSheed mted “Concems" Train
© ' BlockSpescLited "Responsibity” TrainG

—[51x

SeuresDocumerts
CAgert) TrainCortroller (Responsiblty Diat
(Agert) TrainDriver (Responisibilty Diagrar

DoorClosed

DoorsClosedlFFnonZeroSpeed ; "
WhileMoving

Measure

D> OpenDoors

[FormaiRegre ofto Openboors

Boores 3 DP QLY L EOCDO

. L DoorsClosedlFFnon ZeraSpesdhizasire
doorsState : String ZraDoorsClosediFF nonZeroSpesdieasure 'C)

© '@ DoorsClosedFFnonZerospeediteasurs 'R
= Drivertnresponsive

MeasuredSpeed : Real m‘ . o—,é\;umcmseamn:m:‘:g “Refinement’ Dax
BlockSpeed : Real J‘

‘ZaDoars:
©'® Doorsci=|
>

ClassDisgram [

e

StationBlock

o0 9 F 3100000000 LY E0O0ET

= Value
Properies | FormalReqPost
Neme | value
lame las: FormalRegPre. r State = 'Stopped®
ookeary] Recpost
ReaTria
Ferpre

[] [iwosiies s [

SAstart|| 1] @ S &y || Sebravstrens T [epecs/train/ Trainsys... icrasoft PowerPoint - [R.. 48,9550 0 G Astare]|| 1 @ & ||

[Microsaft PawerPaint - [R... | $ghFAUST-REGH I[=1 in/TrainSys...

Modeling operations

¢ Functional view of the system being modeled:
what services are to be provided? (statics)

¢ Operation Op:
- relation Op c InputState x OutputState
- Op must operationalize underlying goals

- Op applications define state transitions (events) in
behavioral model

- Op applications are concurrent with others

- Op is atomic: maps to state at next smallest time unit
(operations with duration: use start/end events)

Specifying operations

— Name, Def

- DomPre: condition characterizing the class of
input states in the domain

- DomPost: condition characterizing the class of
output states in the domain

- Links to other models:

Operationalization (goals), Input/Output (objects),
Performance (agent)

Specifying operationalizations

¢ An operationalization of G into Op is specified by:

- ReqPre: necessary condition on Op's input states to
ensure G (permission)

- ReqTrig: sufficient condition on Op's input states to
ensure G :

requires immediate application of Op provided
DomPre holds (obligation)

- ReqPost: condition on Op's output states to ensure 6

¢ Consistency rule: ReqTrig A DomPre = ReqPre

Specifying operations: example

Operation ePay
Def Operation controlling the e-payment for an item
Input ep: ePurse, pt: PayTerminal; Output ePayment
DomPre There is no ePayment from ep to pt
DomPost There is an ePayment from ep to pt
ReqPre For AgreedAmountPaidIfSufficientBalance:
pt.AgreedAmount < ep.Balance
ReqPost For AgreedAmountPaidlfSufficientBalance:
ep.Balance = e ep.Balance - pt. AgreedAmount

ReqTrig For InstantPaymentUponAgreement:
The amount is agreed and the balance is sufficient

What models ?

Interacition scenanos

-Positive Scenario
Train Controller Train Actuator/Sensor Passenger
start
alarm pressed
alarm propagated

emergency stop

SMmeErgency open .

Behaviors

dlose

Hazards

ols Document Windows Help

e Edt view
B o B B|lad (% o 6|3 |

Boreew § I DP QLS L EOOOID

Jocked Ty [

Lo @8 & S & ok X B O [z s

stops AH-FT

TrainStops IF StopSignal
[N

NoStopAtStopSignal

TN SE

SignalNotVisible BrakeSystemDown
A

RegularResponsivenessCheck

e e

[
Mstort||| 1) @ S 3y || SehravsTreos [FFspecs/trainsTramsys...

[ElMicrosoft PowerPoint - [R

CRADYVOEBE 7

Threats

Goals, scenarios, state machines: win-win partners

/ IncidentResolved /

+ declarative
- + many behaviors

/g\ £ - too abstract?

AmbulanceMobilizatio

Pict o

¢

K PlaySong
\’ a

+ concrete examples + model-checkable, executable
- partial, few behaviors - hard to build, understand

Scenarios as simple MSCs

agent lqgrance mreracrlon event
Positive Scenario 1" Positive Scenario 2 -
Train Controller Train Actuator/Sensor Passenger Train Controller Iram nctuaturﬁe}ikgr Passenger
open doors start I) X
cloze doors A 1 alarm pres‘sed
start ' time: n alartn propacated
stop A Bmergency stop S
start 4 emergency open .|
n u _ I N N W
positive .
_ _ partial order on evenis
Neqgative Scenario 1 . .
total order along timeline
Train Controller Train Actuator/Sensor Passenger
guard start s
T -\ negative
open doors -
N N [

Modeling behaviors with LTS

— Train Controller LTS

¢ An agent is modeled as a LTS

¢ System behavior = composition

of agent behaviors

— Composition operator ||

- Agents behave — @0
asynchronously but p 0
synchronize on shared U
events

- Composition: ||-operator O

Pl Q

Scenarios vs. behavior models

¢ A scenario defines paths in a behavior model
- a path in each agent LTS

- apath in the system's LTS (]])

— Train Controller

rPositive S

cenario 2

| Train Cy

ntroller | | Train Actuator/Sensor | | Passenger

start [

] alarm presse o

L] alarm propagated
emergency stop
EMErGENCY OpEn I

— Composed system

| Train Controller |

‘ Train ActuatorSensor | ‘ Passenger |

rPositive Scenario 2 [

armgfopagate
emev‘genc 0
L
emerbenc apel o
.O
Ld
L
N \ E |
&
-
v
\ k
apen

q-_StipL—/
a.pressed

. a.propagate
a.propagated

cloge

Goals vs. scenarios

¢ A behavioral goal prescribes a set of scenarios

/DoorsCIosed / :Controller :Train :Passenger

WhileMoving arrival

doors
Covers opening |

€

L entrance

doors
closing N

move

arrival

doors
opening

>

<€

Goals, objects, agents, operations:
the semantic picture

‘e
..
3

smallest
time unit

Course outline

¢ Goal-oriented RE for high-assurance applications
- Modeling goals, objects, agents, operations, behaviors
% A goal-oriented model building method in action
- Obstacle analysis for high assurance
- Formal reasoning about models

¢ Engineering security requirements
- Security goals and their specification
- Threat analysis for model consolidation
- Analyzing conflicts among security goals
- Model checking against confidentiality requirements

Model building in KAOS

1. Domain analysis: // SafeTransportation / A
refine/abstract goals

/ / / /
/
oTrainSameBloc
kéN TrainS Block” /

Document Wincdow

Loarr

/|

MNoTrainCollision

DoorClosed WhilelWovin g BlockSpeedLimited

MoTrainsOn AretCaseStonnine DoorsClosedlIFFnonZeroSpeed :
o WorstCaseStopping S MovingIFFnonZeroSpe
Same Block Measure

DistanceMaintained

(Goal) MoTrainsOn Same
Elock diagram

TrainController

gj [specs/train/TrainSystem-RED4.0b] - Cediti Objectiver 1.5.2 with advanced features - |E |£|

File Edit %iew Toolz Document ‘Windows Help

BEaoB@ Bled2% b 8 elaglBls

o050 EE
Q @'1 -TrainSystembdocdel
&= [SourceDocuments
[Agent) TrainCortroller (Responsibilty Diagram
[Agent) TrainDriver (Responsibilty Diagram)
[Zoal) FastJourney diagram
[Zoal) Functiohalzoals
[Zoal) High-level goals
[Zoal) MoTrainz0n Same Block diagrarm
[Zoal Operationalization
[Zoal GoS-Goals
[Goal) SafetyGoals
[Dhstacle) Ohstacles to train stops
ClazsDiagram
FastJourney diagram (Text Explanation)
7 BlockSpeedLimited
SAoBlockSpeedlimited "Concernz" Train
Lo @ BlockSpeedlimited "Responsibility” TrainContro
=& BrakeSystermDown
7 DoorClosed Whilehowving
log {6\ DioorClosed WhilzMoving "Refinement” DoorsCl
F DoorsClozedFFnonZeroSpeediieasure
SroDoorsClozedFFnonZeroSpeediieasure "CONCE o |

@_ [Zoal) MaTrainsOn Same Block diagram AR-F1

(Goal) SafetyGoals

/
TrainStops IF StopSignal Y |

Yalue

MNoTrainsOn Same Block

=
L7
=
far)
0
o
=
|
-3
<
2
o
FO
o
2,
¢

Each block may contain at most

TrainDriver

Pattern Aoic]
Category Safety

Priority Hicgh i

[wocited | [ENoteam |
[=]| Microsoft PowerPaink - [F,.. |EFP.LIST-REEI4 |Ig[specs,-"train,-"Trainﬁys... | ﬁ ‘:BE%%‘ @ [‘a Egﬁff

4

Building a goal model: heuristics & tips

¢ Early discovery of goals ...
- Analysis of system-as-is
= problems, deficiencies, technology opportunities
= goals of S2B: Avoid / Reduce / Improve them

- Search for intentional & prescriptive keywords in
documents available, interview transcripts, etc.
- in order to, so as to, so that, ...

- has to, must, to be, must be, shall, ensure, want, motivate,
expected to, ...

- purpose, objective, aim, concern, ...

refinement links: in order to X the system has to ¥

4

Building a goal model: heuristics & tips (2)

¢ Later discovery of goals ...

- by abstraction (bottom-up):
asking WHY? questions about...

lower-level goals
interaction scenarios
other operational material available

- by refinement (top-down):
asking HOW? questions about goals available

- by use of refinement patterns (cf. below)

- by resolution of obstacles, threats, conflicts (cf. below)

Building a goal model: HOW / WHY questions

/ Effective E-PurseSystem /

B

\ —
/ eMoneyStored; / eMoneyMovedAsNeeded / / BalanceKnown /

Accurately 6\

H@W‘)/ FromBankT/ FromPurs_eTo// Fromf’ayTerminaI/ o

ToPurse PayTerminal ToBank

cPurse | [ePurse Amoun/ Amount / AmountPaid|If /
/ Loaded / / Loaded/ Known// Agreed//SufficientBalance

atBank atATM

4 - . / Debited// Credited/
<le-Purse> < PayTerminal >

4

Building a goal model: heuristics & tips (3)

¢ Abstract goals ... until when ?
... until boundary of system capabilities is reached
e.g. MakePeopleHappy is beyond system's capabilities

¢ Refine goals ... until when ?

... until assignable to single agents as ...
- requirement (software agent)
- expectation (environment agent)

= B B

(Goal) FunctionalGoals

NoTrainsOn Same Block

r

FastRun When GoSignal Signal SetToGo

TrainDriver TrainController

Model building in KAOS

1. Domain analysis: // SafeTransportation / A
refine/abstract goals

/ / / /
/
. . _NoTrai ck
2. Domain analysis; \&helransamesioc /

derive/structure /
objects

/ On \
Train 01 Block

- J

Document A

S B B|led2dn el ella R olBEFE e 3 Zoom: [190 | %

Elp

ClaszDiagram AHR-FS

NoTrai@Dn Sﬁme Block
BlockSpeedLimited

DoorsClosedIFFnonZeroSpeed
Measure

BlockSpeed : Real I|

MeasuredSpeed : Real

Teoiwe i D Q0D oLo 1 BEONOT0

doorsState : String

StationBlock

1. Domain analysis:
refine/abstract goals

2. Domain analysis:

Model building in KAOS

// SafeTransportation / \
/g\

/

/[

\4 NoTrainSameBIock//éafeCom%

derive/structure
objects
/ - On \
Train 01 Block
_ %

/

3. S2B analysis:

enriched goals
(alternatives)

= B B

(Gosl) SafetyGoals Af-FG

/|

MNoTrainCollision

DoorClosed WhileMoving BlockSpeedLimited

MoTrainson
Same Block

DoorsClosedlIFFnonZeroSpeed

MWMeasure

MovinglFFnonZeroSpeed

TrainController

1. Domain analysis:
refine/abstract goals

2. Domain analysis:
derive/structure

objects

Model building in KAOS

// SafeTransportation / \
/g\

/

/[

\4 NoTrainSameBIock//SafeCom%

-

Train

o

DrW

On
0:1

Block

~

Command

/

4. S2B analysis:

enriched objects
from new goals

3. S2B analysis:

enriched goals
(alternatives)

The object model is derivable from the goal model

Goal Maintain [BlockSpeedLimited]

InformalDef A Train should stay below
the max speed the block can handle

FormalDef WV tr: Train, ts: TrackSegment
On (tr, ts) = tr.Speed < ts.SpeedLimit

U

Train on TrackSegment
Speed: SpeedUnit SpeedLimit: SpeedUnit

Systematic, no "hocus pocus" (confessed by UML gurus)
= completeness & pertinence of object model

Object model derivation: more formally ... (2)

Goal Maintain [WC-SafeDistanceBetwTrains]

InformalDef A Train should stay sufficiently far to avoid
hitting the train in front in case of sudden stop

FormalDef V trl, tr2: Train
Following (trl, tr2) = trl.Loc - tr2.Loc > trl.WCS-Dist

Following

Train

U

On

Speed: SpeedUnit
Loc: Location
WCS-Dist: Distance

TrackSegment

SpeedLimit: SpeedUnit

1. Domain analysis:
refine/abstract goals

2. Domain analysis:
derive/structure

objects

Model building in KAOS

(]

SafeTransportation /) 3.82B analysis:

enriched goals

/

/ / (alternatives)

\4 NoTrainSameBIock//SafeCom%

-

On

Train

o

0:1

~

Block

DrW

Command

—

enriched objects Te- -
from new goals

4. S2B analysis: {/Safe Acceler/--=¢~~ + 1

5. Responsibility analysis:
agent OR-assignment

= B B

ne Block diagram AR-F1

Goal) SafetyGoals
MoTrainsOn Same Block
IS

TrainStops IF StopSignal StopSignal IFF TrainOnBlock

TrainDriver

TrainController
|

Context diagrams can be derived from goals

Many behavioral goals take the form

G: CurrentCondition [monitoredVariables]
=> [sooner-or-later/always]

TargetCondition [controlledVariables]

AgreedAmount < ep.Balance
= o ep.Balance = ep.Balance - AgreedAmount

< Pay > ﬁ
Terminal
Agreedm‘ @ ep.Balance

Model building in KAOS

1. Domain analysis: // SafeTransportation /) 3.52B analysis:

refine/abstract goals , //i/:/_{ e(f;ﬂg?ﬁ:tis\l,zzl)s

" P I "
2 Domain ana|YSIS. \4 NoTralnSameBIock//SafeCom/1 .5. Obstacle & conflict

derive/structure / analysis
objects

4 N -
— 1 p—— 4. 52B analysis: {SafeAcceb /__ . é}

UL enriched objects o

. .
DrW Command | from new goals

P

_ 5. Responsibility analysis:

agent OR-assignment

I
g o '§§
Commang . T 6. Operationalization
l

OO / I & behavior analysis

OnBoardController| ' [+ I@/D
K 1 1 /

gj[specs,.-"I:rain,."'TrainSystem—RE[lct.uh] - Cediti Objectiver 1.5.2 with advanced features

File Edit Yiew Tools Document Wincdows Help

=7 %]

Ra@ BRi<Ec22%0 60|/2ehagBlsa

o 05 o Bl[H
o @'1 -TrainSystemiodel
©= [SourceDocurments
(Agent) TrainCortroller (Responsibility Dis
(&gent) TrainDriver (Responsibilty Diagra
(Zoal) FastJourney diagram
[Zoal) Functional>oals
[Goal) High-level goals
[Zoal) MaTrainsOn Same Block diagram
(Zoal) Cperationalization
(Zoal) Gos-Goals
(Goal) SafetyGoals
(Dbstacle) Ohstacles totrain stops
ClazzDiagram
Fastdourney diagram (Text Explanation)
= BlockSpeedlimited
aoBlockSpeedlimited "Concerns" Train
&= @ BlockZpeedLlimited "Responsibility" TrainCd
& BrakeSvystembDown
= DoorClosed Whilehoving
log A DioorClosed WhileMoving "Refinement” Do
=F DoorsClozediFFnonZeroSpeedieasure
o DoorsClozedFFnonZeroSpeadieasure "C
Lo @ DoorsClosedIFFnonZeroSpeedheasure "R :
= DriverUnresponsive |

,&* to Cpenboors [OperationalizationActionSon]

Properties

| Walue

IReqPost

e | 2R R IO0D0CODQ 0BG

ormalRegTrig

ortnalRegPre tr State = "Stopped’
eqFost
Trig

Feq

[B] (Gosl) Operationalization At-F1

DoorClosed
WhileMoving

FarmalRegPre of to Openboors

r State = 'Stupped'l

iiﬁtartl“] & i E) |J = Microsoft PowerPoink - [R,

.| SghFausT-REDS

| Ig[specsftrainfTrainSys...

Course outline

¢ Goal-oriented RE for high-assurance applications
- Modeling goals, objects, agents, operations, behaviors
- A goal-oriented model building method in action
%- Obstacle analysis for high assurance
- Formal reasoning about models

¢ Engineering security requirements
- Security goals and their specification
- Threat analysis for model consolidation
- Analyzing conflicts among security goals
- Model checking against confidentiality requirements

e @2 A
S

Modeling what could go wrong:
obstacle analysis

¢ Problem: goals are often too ideal, will be violated
(unexpected or malicious agent behaviors)

¢ Obstacle = condition on system for goal violation

{O,Dom}|= =6 obstruction
Dom |#= O domain consistency
exists system behavior S s.t. S|=0 feasibility

¢ Particular cases

obstruction of safety goal: obstacle = hazard
obstruction of security goal: obstacle = threat

”@% Obstacle analysis for
- increased reliability & security

¢ Anticipate obstacles ...

=> new goals (countermeasures), deidealized model

= more complete, realistic requirements

= more robust system

= B B

TrainStops IF StopSignal

[

NoStopAtStopSignal

YA AN

SignalNotVisible BrakeSystemDown
-4

Properies

RegularResponsivenessCheck

Obstacle models as goal-anchored fault trees

/ WorstCaseStoppingDistanceMaintained /

/ ReceivedCommand /
. ExecutedByTrain ;

rSafeAcceIeratlon' ! " AccelerationSent SentCommand
4 Computed L' InTimeToTrain /;/ ReceivedByTrain

__

Obstacle models as goal-anchored fault trees

/ WorstCaseStoppingDistanceMaintained /

/ ReceivedCommand
/ ExecutedByTrain ;
rSafeAcceIeratlon' ! " AccelerationSent /¢ SentCommand
/ Computed L' InTimeToTrain /;/ ReceivedByTrain

NotSafe Not _ ~ Not_ _
/ SentinTimeToTrain ReceivedInTimeByTrali

=L NN

\ NotSent SentLate \ SentToWrongTrain \\NotReceived\

\Acceleration\ AccelerationCommand \\ AccelerationCommand \
n

Corrupted \

\ ReceivedLate \

"
D

Obstacle analysis

¢ For every leaf goal in refinement graph
(requirement or expectation):

- identify as many obstacles to it as possible
- assess their likelihood & severity

- resolve them according to likelihood/severity

&

B Obstacle identification

¢ For obstacle to goal &
- negate &

- find as many AND/OR refinements of = &as
possible in view of domain properties ...

- ... until reaching obstruction preconditions that are
feasible (through a system scenario)

= goal-anchored fault-tree construction

Obstacle identification: example

/MotorReversedIffMovingOnRunway/

% MovingOnRunway MotorReversed
IffWheelsTurning IffWheelsTurning

Obstacle identification: example

/MotorReversedIffMovingOnRunway/

% MovingOnRunway MotorReversed
IffWheeIsTurnlng IffWheeIsTurning

—+ obstruction

NOT NOT
MovingOnRunway MotorReversed
IffWheeIsTurnlng IffWheelsTurning

Obstacle identification: example

/MotorReversedIffMovingOnRunway/

not (X1 and X2)
equiv

& MovingOnRunway MotorReversed not X1 or not X2
IffWheeIsTurmng IffWheeIsTurning

i obstruction

NOT NOT
MovingOnRunway MotorReversed
IffWheeIsTurnlng IffWheelsTurning

4 \O\’?"‘ef'"eme";‘\o \o

y (complete)

MovingOnRunway WheelsTurning MotorReversed\ \ WheelsTurning
AndNot AndNot AndNot AndNot
WheelsTurning MovingOnRunway WheelsTurning | \MotorReversed

Obstacle identification: example

/MotorReversedIffMovingOnRunway/

not (X1 and X2)
equiv

& MovingOnRunway MotorReversed not X1 or not X2
IffWheeIsTurmng IffWheeIsTurning

i obstruction

NOT NOT
MovingOnRunway MotorReversed
IffWheeIsTurnlng IffWheelsTurning

Q/ \@\OR-refinemen;‘\O\ \o

y (complete)

MovingOnRunway WheelsTurning MotorReversed\ | WheelsTurning
AndNot AndNot AndNot AndNot
WheelsTurning MovingOnRunway WheelsTurning | \MotorReversed

\WheeIsNotOut\ \WheeIsBroken \ \Aquaplanlng\

Obstacle assessment & resolution

¢ To assess likelihood & severity of identified
obstacle: cfr. risk management techniques

¢ To resolve identified obstacle:
- at RE time: model transformation
- generate alternative resolutions
- select "best” resolution based on ...
- likelihood/severity of obstacle
- other non-functional/quality goals

- at run-time (for non-severe, occasional obstacles):
obstacle monitoring, run-time resolution
(cf. specification-based intrusion detection)

Generating obstacle resolutions

¢ Use of mode/ transformation operators encoding
resolution tactics

- Goal substitution: consider alternative refinement of
parent goal to avoid obstruction of child goal
MotorReversed Iff WheelsTurning
— MotorReversed Iff PlaneWeightSensed

- Agent substitution: consider altern. responsibilities
OnBoardTrainController -» VitalStationComputer

- Goal weakening

TrafficControllerOnDutyOnSector —»
TrafficControllerOnDutyOnSector or WarningToNextSector

Generating obstacle resolutions (2)

¢ Model transformation operators (cont'd):

- Goal restoration: enforce target condition at obstacle
occurrence
ResourceNotReturnedInTime —» ReminderSent
WheelsNotOut -» WheelsAlarmGenerated

- Obstacle prevention: new Avoid goal
AccelerationCommandCorrupted
— Avoid [AccelerationCommandCorrupted]

- Obstacle mitigation: tolerate obstacle but mitigate

its effects
OutdatedSpeed/PositionEstimates

— Avoid [TrainCollisionWhenOutDatedTrainInfo]

Course outline

¢ Goal-oriented RE for high-assurance applications
- Modeling goals, objects, agents, operations, behaviors
- A goal-oriented model building method in action
- Obstacle analysis for high assurance
% - Formal reasoning about models

¢ Engineering security requirements
- Security goals and their specification
- Threat analysis for model consolidation
- Analyzing conflicts among security goals
- Model checking against confidentiality requirements

Formal reasoning about system models ...

¢ To support more accurate analysis & derivations
- Checking refinements & operationalizations
- Generating obstacles to goals
- Generating attack graphs
- Analyzing conflicts
- Synthesizing behavior models from scenarios & goals
- Goal-oriented model animation

¢ Optional "button™: only when & where needed

¢ Requires formal specifications to annotate models

Some bits of real-time linear temporal logic

oP: P shall hold in the next state
] P shall hold in every future state
PW N: P shall hold in every future state

unless N holds
O P: P shall hold in some future state

O< P: P shall hold in every future state
up to 7 time units

O<; P: P shall hold within T time units
+ past operators: eP,mP, ¢ P, ...

P=Q: 0P->Q)
@P: e(nP)AP

Specifying goals in RT-LTL

Goal Maintain [DoorsClosedUntiINextStation]

FormalSpec V tr: Train, s: Station
At (tr, st) A 0 - At (tr, st) =
tr.Doors = "closed" W At (tr, next(st))

Goal Achieve [FastJourneyBetweenStations]
FormalSpec V tr: Train, s: Station
At (tr, st) = O At (tr, next(st))

Achieve P, Cease P
Maintain P, Avoid P . goal specification patterns

Goal-oriented spec of operations

@eration SendCommand

Input tr, tr ’: Train
Output cm: CommandMsg

DomPre =1 Sent (cm, tr)
DomPost Sent (cm, tr)

ReqPost for SafeCommandMsg
Following (tr, tr’) —»
cm.Accel < F(tr, tr') A cm.Speed > G (tr)

ReqTrig for CommandMsgSentinTime
k B_55..c—~dcm' Sent (cm', tr)

N

Formal reasoning: refinement checking

¢ A set of assertions {A4,, ..., A,} correctly refines
assertion A in domain theory Dom iff

{A, .., A, Dom}|= A completeness
{A,, ..., A, Dom} |+ false consistency

{~.iA;, Dom} |+ A foreachie[l.n] minimality

¢ Refinement checking =
- Check that a refinement is correct
- If not, suggest missing sub-assertions A;
¢ Can be used for checking goal models, obstacle models,

anti-goal models; and reveal missing subgoals,
subobstacles, vulnerabilities (completeness is essentiall)

Refinement checking: using refinement patterns

¢ Build catalogue of refinement patterns that
encode refinement tactics

¢ Prove patterns formally, once for all
¢ Reuse through instantiation, in matching situation

¢ Some frequent patterns:

/C:><>T/ /C:><>T/

/C=>0M//M=0T/ /[CAD=0T//C=0D//C=>CWT/

milestone-driven case-driven

Checking a goal refinement with patterns

Achieve [TrainProgress]
On (tr, b) = © On(tr, next(b))

missing subgoal !/
detectable automatically

/ Achieve [ProgressWhenGo] / / Achieve [SignalSetToGo] /

On (tr, b) A Go[next(b)]
= 0 On (tr, next(b)) On (tr, b) = O Gonext(b)]

Checking goal refinements with patterns

Achieve [TrainProgress]
On (tr, b) = © On(tr, next(b))

On(tr, b) A Go [next(b)] On (tr, b) = O Go [next(b)]

= ¢ On (tr, next(b))
Maintain [TrainWaiting]
On (tr, b) =
On (tr, b) W On (tr, next(b))

/Achieve [ProgressWhenGo] / / Achieve [SignalSetToGo] /

Patterns provide guidance in formal refinement

[P:><>QJ

Patterns provide guidance in formal refinement (2)

[P:OQ}

PAR:OQ]

PA—-R=>90R

different
designs

from pattern
catalogue

Use formal pattern => reuse formal proof

P=0R
. PAR=0Q ‘
P> PWQ
P=> (PUQ)VvaP
P=0QvaP
P=>0RALQvVOP) — =
P=>ORAQCQ) V(O®RADOP)—
WS ORACQ VORAP) —
P=>ORAOQ VOOQ —
10.P=>O@RAOQ VOQ —
thesis 11.P=00Q —

hyp

ih |

|L

proof
uo_\lcucn.hoomgé

<

Resolving goal unrealizability:
the Introduce Accuracy goal pattern

¢ WHEN:
agent ag cannot monitor variable m to realize 6 [m]

¢ WHAT:
- introduce monitorable image im of m

- generate refinement :

/p(m) < q(im)/ /6p(m)/q(im)] /

Generating refinements & assignments

Introduce Accuracy goal: example

—— N S
- oy

- -

e ({\MovingOnRunwa; > o ReverseThrustEnabled /

\
unmonitorable
by autopilot

Generating refinements & assignments

Introduce Accuracy goal: example

—— N S
- oy

-

unmonitorable
by autopilot
MovingOnRunway < PlaneWeightSensed
X PlaneWeightSensed | | = o ReverseThrustEnabled
expectation \O\ requirement

<WeightSenso> <Autopi|ot>

Formal refinement patterns can be used informally

¢ Refinement by case

- Applicable when goal achievement space can be partitioned
into cases

/ GoalToBeEnsured /

- ~<o

-

-

~
-~ N

GoalToBeEnsured GoalToBeEnsured
WhenCasel WhenCase?2

- Example of use:

"""""""""""""""""""""""""""""

' ResourceAllocated / / ResourceReserved
WhenAvailable ¢ / WhenNotAvailable !

Formal patterns can be used informally (2)

¢ Refinement by milestone

- Applicable when milestone states can be identified on the
way to the goal's target condition

/ TargetStateReached /

MilestoneState TargetStateReached
Reached FromMilestone

- Example of use:

/ WorstCaseStoppingDistanceMaintained /

/ ReceivedCommand !
ExecutedByTrain ;

--- y T

SafeAcceIeratlon ! AccelerationSent ¢+ SentCommand |
Computed L' InTimeToTrain | L' ReceivedByTrain !

Informal use of patterns can reveal errors

| Optimal air traffic configuration

/]

| Air traffic monitored Mo unnecessary route changes
T
(859

Sector monitorable Sector monitored Situation always under control

| Good ATC coordination Sector transition coordinated

\ y STCA notified Sector traversal planned Sector traversal monitored

milestone goals ™ P atcal Contotr |

Formal patterns can be used informally (3)

¢ Refinement towards goal realizability

- -~

~

-~

GoalOnMonitorable / /UnMonitorableCondition
Condition IffMonitorableCondition

-
oo -

- -~

-~
-~ -

/GoaIOnControIIabIe//UnControIIabIeConditior/

Condition IffControllableCondition

child node may be goal (incl. requirement, expectation)
or domain property (invariant/hypothesis)

Formal patterns can be used informally (4)

Refinement towards goal realizability: example of use

/DoorsCIosedWhiIeMoving /

R -
= -~

~ -
Yoo -

/ DoorsClosedWhileNonZeroSpeed / NorI:/lZOevrnggfee q
requirement domain invariant

R -
= -~

~ -
Yoo -

Nurselntervention Alarmlff
WhenAlarm CriticalPulseRate

expectation requirement

Refinement checking: roundtrip use of bounded
SAT solver
¢ Incremental check/debug of model fragments
¢ On selected object instances (propositionalization)
¢ With bounded traces (to be given)

¢ Ouput:
OK (no counterexample found within trace bound)
KO + counter-example scenario satisfying
GiN..NG,Dom~rn-6

&, [specsitrain/TrainSystem-RE04.0b] - Cediti Objectiver 1.5.2 with advanced features

File Edit “iew Tools Document Windows Help

B = B¢ 2% 0 68|22 e|haldlall

=] =]=]=]EF] *
lFain progress
Instances
Ohjects

[Zoal) Train progress (hounde
[Zoal) Train progress (refinem
[zoal) Train progress (unkhoun);

|:|I‘B.‘| E E FaortnalDef (formula) Ak-F2

bz W

@_ [Goal) Train progress (hounded) AR-F1

train progress (bounded)

'

b Styles

I FormalDef oftrain progress (hounded)

Al tr: Train, b : Block

nextBlocki Onitr, b

=== == [==4 steps] Oniti=h

| =
[DObject) Train progress g
Train progress (houndecd) (u:up &t 5! Mew concept
» move train to nesxt block A = _
7 progress when go signal (bhaul :
,‘i progress when oo signal (bouf] O g ...]
7 progress when go signal (unk oWl
A progress when 9o signal (unk; = @_ Formallet (formula) Ak-F4
» =et to go signal : NI
M-zt to go signal "Output” Black | 1= bfl i W) cietaut h Styles
[signal set to go (hounded) B O L path ;. states repeating for ever in this orde
&, signal set to go (hounded) "Op = M If FormalDef of sighal set to go (hounded) E O—H(Trir;ulmjk: 1BIu[:I_c 2 dﬂ
7 signal set to go (unbounded) B9 & < M il tr Train, b - Block | o signalBlock [1]0) = red(
(& signal set to go (unbounded) " ||] = nextBlock(On(tr), b) E QD_S!QH_E:%%Igi = red) N
s Train MInpat” pnovee train to necdt i e === == [== 7 steps] qo signal { b} = qreen 5 40 signal Block [2]0)) = green]
T gt setto go srel | || | o | ! hel go sinal (1) = areend) &, nextBlock(Block [110),Block [210) s True
= train progress (bounded) : @_ FortalDef (formula) At-F5 o nextBlockBlock [310 Block [1107 is True
LA T | = sl & nextBlock Block [21(Block [310)) is True
<] | : b),l 7 || L) defaut =
|| oo 1]
A e b d de 1|l i,
rain progress (hounded) "Refi... : & ||/ FormalDef of progress when go signal thounded) B (1 STATE 1 (still within loop)
3 All tr: Train, b : Block = OnTrain [1)() = Block [117)
Properties e nextBlock(Onlr) b} A go signal (b} = greend) [E] qo signal Block [310) = areen()
Name | Valug | @ === == [== 2 steps] Onitri = b no signal Block [2]()) = red)
Pattern &
EltMame 3
Complete [

Sep 19, 2004 1105300 &M INFO: Reqguest FormalCheckAnalysisOfRefinement result has been received.

I [woditied | B 5om

Formal reasoning:
abductive generation of obstacles

¢ Aim: Find Osuch that
O, Dom|— =6 , Dom|#- O

¢ Approach 1: Use precondition calculus to get = &
from Dom

= regression of goal negation through domain theory

¢ Approach 2: Use formal obstruction patterns

§/ Generating obstacles by regression
N

/ MovingOnRunway = o ReverseThrustEnabled /

expectation requirement
MovingOnRunway WheelsTurning
A <> WheelsTurning — 0 ReverseThrustEnabled

t t

? ?

Generating obstacles by regression

Find precondition for obstruction of ...
MovingOnRunway = WheelsTurning

Generating obstacles by regression
Find precondition for obstruction of ...
MovingOnRunway = WheelsTurning
— goal negation:
0 MovingOnRunway A = WheelsTurning

Generating obstacles by regression

Find precondition for obstruction of ...
MovingOnRunway = WheelsTurning

— goal negation:
0 MovingOnRunway A = WheelsTurning
— regress through Dom:
? necessary conditions for wheels turning ?
WheelsTurning = = Aquaplaning
i.,e. Aquaplaning = = WheelsTurning

Generating obstacles by regression

Find precondition for obstruction of ...
MovingOnRunway = WheelsTurning

— goal negahon ________

— regress through Dom: \
? necessary conditions for wheels turning? |

WheelsTurning =2 = Aguaplaning ,/l

\//

-

i.e. Aquaplaning = < V\[heelsTurnm
> RHS unifiable:
0 MovingOnRunway A Aquaplaning
Warsaw obstacle

... or use formal obstruction patterns

¢ Very frequent pattern, used in this example:

[C=T/

0 CrmT\

\0 C/\"N\ T=N

obstacle domain property:
necessary condition for
target condition

¢ Can be used to elicit domain properties as well

Some frequent obstruction patterns

/C:ADT/ /C?OT/

\O(CAO"T)\ \O(CAI:IHT)\
\O(Cm <cAn<-.T/ulmT/m
backward chain starvation
/ C ? 0 T/

\O(CAEI-'T)\

\o«:mm

milestone

Some frequent obstruction patterns

/C:ADT/

\O(CAO"T)\

\O(CAOB)\ B=>0-T O(CAD(-'TU-'P))\ T=P

backward chain N starvation
/ C : 0 'ﬁ\

\O(CAEI-'T)\

\O(CADM

milestone

Example of pattern instantiation

/ Yu: User, r: Resource)/
Requests (u,) = ¢ Gets (u, r
A

3 u: User, r: Resource
Q (Requests (u, r) A 0 = Gets (u, 1))

3 u: User, r: Resource
0 (Requests (u, r) A
0 (= Gets (u, r) U coalition (u, r)))

Gets (u, r)
= = coalition (u, r)

starvation

Course outline

¢ Goal-oriented RE for high-assurance applications
- Modeling goals, objects, agents, operations, behaviors
- A goal-oriented model building method in action
- Checking goal refinements
- Obstacle analysis for high-assurance applications

¢ Engineering security requirements
- Security goals and their specification
- Threat analysis for model consolidation
- Analyzing conflicts among security goals
- Model checking against confidentiality requirements

Application-level security

¢ Application is secure iff meets security goals

¢ Security goal refers to environment assets to be
protected against undesired behaviors

Confidentiality, integrity, availability, privacy,
accountability, non-repudiation, ...

¢ Threat = obstacle to security goal

¢ Security countermeasure = obstacle resolution

Specification patterns for security goals

¢ Confidentiality goals
Avoid [SensitiveInfoKnownByUnauthorizedAgent]
Vag: Agent, ob: Object
— Authorized (ag, ob.Info) = — KnowsV,, (ob.info)

KnowsV,, (v) = 3 x: Knows,, (X = v)

Knows,, (P)= Belief,, (P) A P
T
"Pis in ag's memory"”

¢ Other patterns for privacy, availability, integrity,
authentication, non-repudiation, ...

Application-specific instantiation of
security goal patterns

Goal Avoid [SensitiveInfoKnownByUnauthorizedAgent]
Vag: Agent, ob: Object
— Authorized (ag, ob.Info)= — KnowsV,, (ob.info)

! Web banking services

Application-specific instantiation of
security goal patterns

Goal Avoid [SensitiveInfoKnownByUnauthorizedAgent]
Vag: Agent, ob: Object
— Authorized (ag, ob.Info)= — KnowsV,, (ob.info)
! Web banking services
Object / Account [#, PIN] sensitive info in object mode/
Authorized (ag, acc) =
Owner (ag, acc) v Proxy (ag, acc) v Manager (ag, acc)

"

Application-specific instantiation of
security goal patterns

Goal Avoid [SensitiveInfoKnownByUnauthorizedAgent]
Vag: Agent, ob: Object
— Authorized (ag, ob.Info)= — KnowsV,, (ob.info)

! Web banking services

Object / Account [#, PIN] sensitive info in object mode/
Authorized (ag, acc) =
Owner (ag, acc) v Proxy (ag, acc) v Manager (ag, acc)

)
Goal Avoid [PaymentMediumKnownBy3rdParty]

Vp: Person, acc: Account
— [Owner (p, acc) v Proxy (p, acc) v Manager (p, acc)]
= — [KnowsV, (acc.Acc#) A KnowsV, (acc.PIN)]

Further patterns for confidentiality goals

¢ Two dimensions of confidentiality:

- Degree of approximate knowledge to be kept
confidential

- Timing along which knowledge should be kept
confidential

¢ Pattern catalogue

- Provides standard specification patterns
- Hides complicate formulas

Specification patterns for confidentiality goals

degree of knowledge
Timing Of
Knowledge val | b | ub | betw | full | Val
Now
upTo
| full-confidential -forever
Unless
\\
Until \
forever N

Zooming on some patterns..

Specification patterns: a sample

Fully confidential value

Full-Confidential, (x) =
V v e ran(x): = Knows,4(x # V)

Confidential forever
Y-Confidential-forever, (x) =
vV w: x =w — 0O Y-Confidential,,(x)
with Y € {val, Ib, ub, betw, full}

Specification by pattern instantiation:
V ep: ePurse, ag: Agent
— Owns(ag, ep) A ag # ep
= full-Confidential-forever, (ep.balance)

Course outline

¢ Goal-oriented RE for high-assurance applications
- Modeling goals, objects, agents, operations, behaviors
- A goal-oriented model building method in action
- Checking goal refinements
- Obstacle analysis for high-assurance applications

¢ Engineering security requirements
- Security goals and their specification
- Threat analysis for model consolidation
- Analyzing conflicts among security goals
- Model checking against confidentiality requirements

Threat analysis: unintentional vs. intentional threats

¢ Unintentional threat: inadvertent violation of security goal
- Handled by obstacle analysis on security leaf goals
- E.g. accidental disclosure of confidential information

¢ Intentional threat: proactive violation of security goal by
exploitation of unprotected data & system knowledge
acquired through malicious behaviors, calculations,
deductive inference, etc.

- Handled by obstacle analysis augmented with malicious
agents, their anti-goals, and their capabilities

- E.g. E-shopping: Achieve[ltemReceivedAndNotPaid]

Intentional threats require an anti-model

¢ The scope of the environment is extended to include
malicious agents (“attackers")

- human insiders or outsiders of the original system,
tools, fake devices, ...

¢ Anti-goal = malicious obstacle to satisfy
attacker's objectives (and break security goals)

¢ Anti-model = model linking anti-goals against
a goal model

Intentional threats require an anti-model (2)

¢ An anti-model is a dual model ...

- the software is now part of the attacker's
environment

- domain properties include software vulnerabilities

¢ Threat graph = refinement graph showing a plan ...
- to achieve some anti-goal
- in view of the attacker's capabilities

Analyzing intentional threats: attacker's capabilities

¢ Capabilities = two sets of conditions:
- conditions that are monitorable by the attacker
- conditions that are controllable by the attacker
e.g. e-shopping: ItemPaidByCustomer,
PaymentNotificationReceivedBySeller

¢ Most Knowledgeable Attacker (MKA):

- Knows the goal model, the domain properties used in
it, and the operation model

Trivially satisfied as attacker at RE time is the modeller
looking for missing countermeasures

Worst-case threat analysis is desirable for complete
exploration of security countermeasures

Threat analysis for intentional threats

¢ Build threat graphs from anti-goals:

- Get initial anti-goals to be refined/abstracted --e.g.,
from negations of application-specific security goal

- Identify attackers wishing them, their capabilities

- Build anti-goal refinement/abstraction graphs until

reaching conditions that are realizable by the attackers
(monitorable or controllable)

¢ Derive new security goals as countermeasures to
counter the leaf anti-goals in threat graphs

Step 1: Get initial anti-goals

¢ Negate security goal instantiation to application-
specific "sensitive” objects ...

Goal Avoid [PaymentMediumKnownBy3rdParty]

Vp: Person, acc: Account
— Authorized (p, acc)

= — [KnowsV, (acc.Acc#) A KnowsV,, (acc.PIN)]
A goal negation

Step 1: Get initial anti-goals

¢ Negate security goal instantiation to application-
specific "sensitive” objects ...

Goal Avoid [PaymentMediumKnownBy3rdParty]

Vp: Person, acc: Account
— Authorized (p, acc)

= - [KnowsV, (acc.Acc#) A KnowsV, (acc.PIN)]
A goal negation

Anti-Goal Achieve [PaymentMediumKnownBy3rdParty]

0 3 p: Person, acc: Account
— Authorized (p, acc)

A KnowsV, (acc.Acc#) A KnowsV, (acc.PIN)

ey Step 2: Identify attackers wishing anti-goals

¢ For each initial anti-goal:
- ask WHO might benefit from it
- use of attacker taxonomies

Anti-Goal Achieve[PaymentMediumKnownBy3rdParty]

"

Insiders: Bank QA team
Organization-specific agents

Outsiders: Thieves
Hackers
Terrorists, ...

Step 3: Build threat graph

¢ For each (initial anti-goal, attacker): build anti-goal
refinement/abstraction graph ...
- Informally: by use of refinement patterns or by
WHY/HOW questions
WHY = parent anti-goals
HOW = child anti-goals

Step 3: Build threat graph

¢ For each (initial anti-goal, attacker): build anti-goal
refinement/abstraction graph ...

- Informally: by use of refinement patterns or by
WHY/HOW questions

WHY = parent anti-goals
HOW = child anti-goals
- Formally: by regression through ...

... domain properties P= A6
= anti-goal preconditions satisfiable /n domain

.. goal specs from attacked model
= preconditions satisfiable by attacked sofitware

Anti-goal refinement by regression through domain

Anti-Goal Achieve [PaymentMediumKnownBy3rdParty]
¢ 3 p: Person, acc: Account
— Authorized (p, acc) A KnowsV, (Acc#) A KnowsV, (PIN)

V domain property as sufficient condition ?

Anti-goal refinement by regression through domain

Anti-Goal Achieve [PaymentMediumKnownBy3rdParty]
¢ 3 p: Person, acc: Account

— Authorized (p, acc) A KnowsV, (Acc#) A KnowsV, (PIN)

v dom prop as sufficient condition ?

Vp: Person, acc: Account
- Authorized (p, acc) A KnowsV, (acc.PIN)

A (3 x: Acc#t) (Found (p, x) A Matching (acc.PIN, x))
= KnowsV, (acc.Acc#) A KnowsV, (acc.PIN)

y anti-subgoal:

Anti-goal refinement by regression through domain

Anti-Goal Achieve [PaymentMediumKnownBy3rdParty]
¢ 3 p: Person, acc: Account

— Authorized (ag, acc) A KnowsV, (Acc#) A KnowsV,, (PIN)

v dom prop as sufficient condition ?

Vp: Person, acc: Account
— Authorized (ag, acc) A KnowsV, (acc.PIN)

A (3 x: Acc#t) (Found (p, x) A Matching (acc.PIN, x))
= KnowsV, (acc.Acc#) A KnowsV, (acc.PIN)

y anti-subgoal:
¢ 3 p: Person, acc: Account
— Authorized (p, acc) A KnowsV, (acc.PIN)
A (3 x: Acc#) (Found (p, %) A Matching (acc.PIN, x))

Build threat graph: refine until ...

¢ ... terminal conditions are reached ...
- anti-requirements
realizable in terms of attacker's capabilities

- vulnerabilities of attackee
properties of anti-domain

Refinement towards realizability by attacker:
a known attack

00 / PaymentMedlumKnownBy3rdPart3/

'\.\

PinKnown& AccountKnowné&
MatchingAccountFound MatchingPinFound

Refinement towards realizability by attacker:
a known attack

00 / PaymentMedlumKnownBy3rdPart3/

\

PinKnown& AccountKnowné&
MatchingAccountFound MatchingPinFound

/Pannown/ MatcrclllngAccount// AccountKnown/ /Matcr&mgPln/
Foun Foun

Refinement towards realizability by attacker:
a known attack

00 / PaymentMedlumKnownBy3rdPart3/

\

PinKnown& AccountKnowné&
MatchingAccountFound MatchingPinFound

/PinKnown/ MatchlngAccount//AccountKnown/ /MatchlngPln/
. Found ound
realizable

AccountChecked / / ChecklteratedOnOther Iﬁh
ForPinMatch AccountsifNoMatch Repeatable

realizable realizable vuinerability

Deriving countermeasures

¢ New security goals obtained by application of
resolution operators, e.g.

- Avoid [anti-goal]:
Avoid [AccountCheckRepeatableFromPin]
Avoid [PinCheckRepeatableFromAccount]

- Make vulnerability condition unmonitorable by
attacker

- Make anti-requirement uncontrollable by attacker

¢ To be further refined along alternative OR-branches
in the updated goal model

Online shopping: functional goals

/ ItemOrderedByBuyer = 0y [temReeeivedByBuyer/

/ ltemOrdered = ltemSent =
0y ItemPaid 0q ItemReceived
ShippingCo

BELIEFS(ItemPaid)
= 0uq Bmsamd) = 0 ltemSent
Seller
/ ltemPaid = NotificationReceived =
0.s, PaymentReceived BELIEF(ltemPaid)

Seller
PaymentReceived = / / NotificationSent =

Oa, NotificationSent O<a, NotificationReceived

Online shopping: a security goal

/ ItemOrderedByBuyer = 0y ltemReceivedByBuyer /

e O, ltemSent =
-7 ltemPaid
'

<

/ ltemOrdered = / ltemSent =
0y ItemPaid 04 ItemReceived
ShippingCo

BELIEF(ItemPaid)
= osw ltemSent

Seller

BELIEFg(ItemPaid)

Seller
PaymentReceived = / NotificationSent =
Oen NotificationSent / / O_g, NotificationReceived

NotificationReceived = /

Online shopping: anti-goal

0,4 ItemSent
A = ItemPaid

/ ltemOrdered = / ltemSent =
0y ItemPaid 0q ItemReceived
ShippingCo

BELIEFS(ItemPaid)
= 0uq Bmsamd) = 0 ltemSent
Seller
/ ltemPaid = NotificationReceived =
0.s, PaymentReceived BELIEF(ltemPaid)

Seller
PaymentReceived = / NotificationSent =
Oa, NotificationSent O<a, NotificationReceived

Online shopping: anti-goal model

0,4 ItemSent - Oy iicmSenrt =
A — ItemPaid temPaid

ltemSent =
04 ItemReceived

| = ttemPaid | / 0,4 BELIEF4(ItemPaid) /

/

ltemOrdered =
0y ItemPaid

/ BELIEF(ItemPaid)

= 0 ltemSent
Seller
/ ltemPaid = NotificationReceived =
Oq PaymentReceived BELIEFg(ItemPaid)

Seller
PaymentReceived = / NotificationSent =
Oa, NotificationSent O<a, NotificationReceived

Online shopping: anti-goal model

VR R E O, iicmSert =
A — ItemPaid temPaid

/ ltemOrdered =

0pq ltermPaid ltemReceived

/ﬁ 'tempa'd/ /<><1d BELIEFS(ItemPaid)/
/

BELIEFS(ItemPaid) /+
= 0 BBLIBFs(lmelid) = Osm ltemSent
<><1d NotificationReceived /
/ ltemPaid = NotificationReceived = /

0. PaymentReceived BELIEFg(ltemPaid)

Seller
PaymentReceived = / NotificationSent =
Oa, NotificationSent O<a, NotificationReceived

Online shopping: anti-goal model

VR R E O, iicmSert =
A — ItemPaid temPaid

/ ltemOrdered =

0pq ltermPaid ltemReceived

/ﬁ | empa'd/ /<><1d BELIEFS(ItemPaid)/
/

BELIEFS(ItemPaid) / +
= Ouq BBLIEFs(lmeald) = Osm ltemSent

<><1d NotificationReceived

/ ltemPaid = NotificationReceived =
0.s, PaymentReceived BELIEF(lemPid)

PaymentReceived = / NotificationSent = / O6n FakeNotlflcSent /
0.sn NotificationSent / / Oy, NotificationReceived Attacker

Online shopping: goal model with countermeasures

/ ltemOrderedByBuyer = 0 ltemReceivedByBuyer /

ltemSent =

liemOrdered =
¢ ltemReceived

0 ltemPaid
7

BELIEF(Seller, ltemPaid)
= 0 ltemSent

/ =0 BELIEF(SeIIet ltemPaid)

Seller
/ ConfirmRequested
ltemPaid = A PaymentConfirmed
0 PaymentRecei 7 = O BELIEF¢(ItemPaid)
ymentReceived = NotifReceived =
/Pg NotificationSent / ¢ ConfirmRequested ConfirmRequested
P tReceived

NotificationSenat & Seller 7 T AYMEITIRECEIVE

o = ¢ PaymentConfirmed PGYPOI

NotificationRecei

Application:

Security of Aircraft in the Future European Environment

m Threats against crew & passengers

(External threats) =)

. :
o

m Threats from baggage area

* Modeling terrorist threats (anti-goal model)
* RE for on-board threat detection & reaction system

Automated synthesis of threat graphs

¢ Builds a proof showing realizability of anti-goal in
view of attacker's capabilities & knowledge of
environment

¢ Capabilities = Boolean state variables (atomic
conditions that are monitorable/controllable)

¢ Based on BDD representation of anti-goal

¢ Weakens powerful macro-agent by removal of
capabilities, following BDD state-variable ordering

Synthesizing attack graphs (plan generation)

- ItemPaidByCustomer ItemSentToCustomer

T

ShopEnowsItemPaidEyCustomer

T

HotificationBReceived

Attacker anti-goal:
— ItemPaidByCustomer A ItemSentToCustomer
Attacker capabilities:

Controls ItemPaidByCustomer, NotificationReceived
Monitors --

Course outline

¢ Goal-oriented RE for high-assurance applications
- Modeling goals, objects, agents, operations, behaviors
- A goal-oriented model building method in action
- Checking goal refinements
- Obstacle analysis for high-assurance applications

¢ Engineering security requirements
- Security goals and their specification
- Threat analysis for model consolidation
- Analyzing conflicts among security goals
- Model checking against confidentiality requirements

Conflict analysis

¢ Divergence is most frequent case of conflicting goals,
requirements or assumptions:

potential logical inconsistency

¢ Goals 6, ..., 6, are divergent iff
there exists a boundary condition B :
{B, A 6, Dom} |= false inconsistency
{B,A. 6, Dom} |+ false minirmality
exists system behavior S s.t. S|=8B feasibility

Divergence frequently involves security goals

Maintain[ReviewerAnonymity]:
Reviews (r, pap, rep) A AuthorOf (a, pap)
= 0O = Knows (a, Reviews(r, pap, rep))

Achieve[ReviewIntegrity]:
Reviews (r, pap, rep) A AuthorOf (a, pap)
= 0 Gets (a, rep’, pap,) Arep' = rep

Divergence frequently involves security goals

Maintain[ReviewerAnonymity]:
Reviews (r, pap, rep) A AuthorOf (a, pap)
= 0O = Knows (a, Reviews[r, pap, rep])

Achieve[ReviewIntegrity]:
Reviews (r, pap, rep) A AuthorOf (a, pap)
= 0 Gets (a, rep', pap, ') A rep' = rep

Boundary condition: ¢3r, pap, a, rep, rep ’
Reviews (r, pap, rep) A AuthorOf (a, pap)
A 0 Gets (a, rep’, pap,) Arep' = rep
A French (r) A= 3r'#r: Expert (r') A French (r')

Conflict analysis (2)

¢ Detecting divergence:
- by regression: derive 8 as precondition for = 6, from
{A.. 6,, Dom}
- by use of formal conflict patterns

¢ Resolving divergence: resolution operators

- avoid boundary condition: D -B
- restore divergent goals: B= OAG
- anticipate conflict: P= 0s-P

- weaken goals, specialize objects, etc.

Deriving boundary condition for conflict

By regression:
AtStation A 0~ AtStation = DoorsClosed W AtNext
e (Stopped A Alarm) = DoorsOpen

Deriving boundary condition for conflict

By regression:
AtStation A 0~ AtStation = DoorsClosed W AtNext
e (Stopped A Alarm) = DoorsOpen

— negate 61:

AtStation A 0~ AtStation A
2 AtNext U (DoorsOpen A = AtNext)

Deriving boundary condition for conflict

By regression:
AtStation A 0~ AtStation = DoorsClosed W AtNext
e (Stopped A Alarm) = DoorsOpen
— negate 61:

AtStation A 0~ AtStation A
2 AtNext U (DoorsOpen A = AtNext)

— regress =1 61 through 62:

AtStation A 0= AtStation
A 1 AtNext U (e Stopped A ® Alarm A = AtNext)

boundary condition for conflict

Course outline

¢ Goal-oriented RE for high-assurance applications
- Modeling goals, objects, agents, operations, behaviors
- A goal-oriented model building method in action
- Checking goal refinements
- Obstacle analysis for high-assurance applications

¢ Engineering security requirements
- Security goals and their specification
- Threat analysis for model consolidation
- Analyzing conflicts among security goals
%- Model checking against confidentiality requirements

CONCHITA: checking requirements models against
confidentiality claims
¢ Given ...
-an object model (entities, associations, agents)
- a list of requirements
- assumed confidentiality requirements
- claimed confidentiality requirements }

¢ Find a finite trace ...

- satisfying the requirements

- where an agent instance can acquire knowledge that
violates one of the confidentiality claims

+ Explain how the agent acquired this knowledge

Implementation:
Bounded Model Checking, Finite instantiation,
CSP solver (efficient arithmetic and search space pruning)

specified with
patterns

Running CONCHITA on e-Purse system:
trace leading to information disclosure

TimeO
<_Alice > Bob
Owns / Has \
Terminall
ePursel \ Pay Terminal

inputAmount: 4

\Balance: 0/ Inserted \ amountAgreed: true

Timel TimeO0 |= ePursel.BaIan@>C>
@ no payment Bob

because
OWn?nsuff/C/enf balance / payH'lg: rminall \
/ ePursel \| Credit: 0

\Balance:Q/ amountAqgreed: false

+ explanation = knowledge fragments used in the deduction

Example of axioms about unauthorized agent (VA)

Maximal Input at any time, UA knows the value
of every non confidential variable

Ex: seller knows the amount that is entered in
the terminal

Example of axioms about unauthorized agent (VA)

Maximal Input at any time, UA knows the value
of every non confidential variable

Perfect UA knows all the requirements the
System software implements and all the
knowledge properties of the domain.

Ex: the seller knows that payment is denied
in case of insufficient balance.

Example of axioms about unauthorized agent (VA)

Maximal Input at any time, UA know the value
of every non confidential variable

Perfect UAs know all the requirements the
System software implements and all the
knowledge properties of the domain.

Perfect Recall UAs always remember facts and
properties they used to know in the past.

Ex: at timel, the seller remembers the entered
amount, the insertion of the e-Purse, ...

Conclusion

¢ Rich models are essential for HA applications

- multiple dimensions: intentional, structural,
responsibility, operational, behavioral

- software + environment (e.g., humans, devices, other
software, mother Nature, attacker, attackee)

start thinking about high assurance at RE time
- alternative refinements, assignments, resolutions

- seamless transition from high-level concerns to
operational requirements

Conclusion (2)

¢ The building of such models is hard & critical;
should therefore be guided by methods...

- systematic
- top-down + bottom-up
- incremental

- supporting the analysis of partial models

Conclusion (3)

¢ Goal-based reasoning is central for...
- model building & elaboration of requirements
- exploration & evaluation of alternatives
- conflict management

- anticipation of hazards and threats
(requirements-level exception handling)

Conclusion (4)

¢ Goal completeness can be achieved through multiple
means ...

- refinement checking =>
missing subgoals, subobstacles, threats/vulnerabilities

- obstacle/threat analysis => countermeasure goals

- animation (not discussed here)

Conclusion (5)

¢ Be pessimistic from beginning about software and

environment
hazards, threats, conflicts

¢ Benefits of multi-button framework

- semi-formal ...
for modeling, navigation, traceability

- formal, when and where needed ...
for precise, incremental reasoning on model pieces

Thanks ...

¢ To the KAOS crew at UCL, CETIC & RESPECT-IT
as researchers, consultants, or tool developers

C. Damas, A. Dardenne, R. Darimont,
R. De Landtsheer, E. Delor, B. Lambeau, E. Letier,
P. Massonet, C. Ponsard, A. Rifaut, H. Tran Van

¢ To Steve Fickas and his group at Univ. Oregon

¢ To the EU & Region of Wallonia for significant
funding of those efforts

More information available ...

Requirements
Engineering

¢ ... on the method & associated techniques in:

A. van Lamsweerde, Reguirements Engineering - From
System Goals to UML Models to Software
Specifications. Wiley, 2008.

www.info.ucl.ac.be/~avl

¢ ... on tools at:

http://www.objectiver.com
http://faust.cetic.be

Relevant papers

A. van Lamsweerde, "Requirements Engineering in the Year 00: A Research
Perspective". Keynote Paper, Proc. ICSE ‘2000 - Int/ Conf on Software
Engineering, June 2000, IEEE CS Press, pp. 5-19.

R. Darimont & A. van Lamsweerde, "Formal Refinement Patterns for Goal-Driven
Requirements Elaboration”. Proc. FSE-4 - Fourth ACM Conf on Foundations
of Software Engineering, San Francisco, Oct. 1996, 179-190.

E. Letier & A. van Lamsweerde, "Agent-Based Tactics for Goal-Oriented
Requirements Elaboration”, Proc. ICSE 2002 - 24th Int/ Conf on Software
Engineering, Orlando, May 2002, IEEE CS Press, 83-93.

A. van Lamsweerde & E. Letier, "Handling Obstacles in Goal-Oriented
Requirements Engineering”, IEEE Transactions on Software Engineering,
Special Issue on Exception Handling, Vol. 26, No. 10, October 2000.

E. Letier & A. van Lamsweerde, "Deriving Operational Software Specifications
from System Goals", Proc FSE 2002 - 10th ACM Conf on the Foundations of
Software Engineering, Charleston (South Carolina), November 2002.

E. Letier and A. van Lamsweerde, "Reasoning about Partial Goal Satisfaction for
Requirements and Design Engineering”, Proc FSE0O4, 12th ACM Int/ Symp.
Foundations of Software Engineering, Newport Beach (CA), Nov. 2004,

Relevant papers (2)

A. van Lamsweerde, "Elaborating Security Requirements by Construction of
Intentional Anti-Models”, Proc ICSEO4 - 26th Int/ Conf on Software
Engineering, Edinburgh, May. 2004, ACM-IEEE, 148-157.

R. De Landtsheer & A. van Lamsweerde, "Reasoning about Confidentiality at
Requirements Engineering Time", Proc. ESEC/FSE05, 13th ACM Int! Symp.
on the Foundations of Software Engineering, Lisbon, Sept. 2005, 41-49.

A. van Lamsweerde, R. Darimont & E. Letier, Managing Conflicts in Goal-Driven
Rquirements Engineering, IEEE Transactions on Software Engineering,
Vol. 24 No. 11, November 1998, pp. 908 - 926.

C. Damas, B. Lambeau, P. Dupont & A. van Lamsweerde, "Generating Annotated
Behavior Models from End-User Scenarios", TEEE Transactions on Software
Engineering, Vol. 31, No. 12, December 2005, 1056-1073.

H. Tran Van, A. van Lamsweerde, P. Massonet, Ch. Ponsard, "Goal-Oriented
Requirements Animation”, Proc RE04, 12th IEEE Joint Int/ Reguirements
Engineering Conference, Kyoto, Sept. 2004, 218-228.

