
IBM Research

© 2008 IBM Corporation

The broken file shredder
Programming traps and pitfalls

Wietse Venema
IBM T.J.Watson Research Center
Hawthorne, NY, USA

IBM Research

© 2008 IBM Corporation2 The broken file shredder - programming traps and pitfalls

Overview

 What happens when a (UNIX) file is deleted.

 Magnetic disks remember overwritten data.

 How the file shredding program works.

 How the file shredding program failed to work.

 “Fixing” the file shredding program.

 Limitations of file shredding software.

IBM Research

© 2008 IBM Corporation3 The broken file shredder - programming traps and pitfalls

UNIX file system architecture

foo 123

bar 456

and so on...

Directory /home/you

Inode 123

data block #s

type=file/dir/etc

access perms

reference count

owner/group ID

data block

data block

data block

Data blocks
time stamps

file size

filename inode

IBM Research

© 2008 IBM Corporation4 The broken file shredder - programming traps and pitfalls

Deleting a UNIX file destroys structure, not content

foo 123

bar 456

and so on...

Directory /home/you

Inode 123

data block #s

type=file/dir/etc

access perms

reference count1

owner/group ID

data block

data block

data block

Data blocks
time stamps2

2status change time = time of deletion

file size
1zero references

foo

filename inode

IBM Research

© 2008 IBM Corporation5 The broken file shredder - programming traps and pitfalls

Persistence of deleted data

 Deleted file attributes and content persist in
unallocated disk blocks.

 Overwritten data persists as tiny modulations on
newer data.

 Information is digital, but storage is analog.

Peter Gutmann’s papers: http://www.cryptoapps.com/~peter/usenix01.pdf

and http://www.cs.auckland.ac.nz/~pgut001/pubs/secure_del.html

kool magnetic surface scan pix at http://www.veeco.com/ nanotheather

IBM Research

© 2008 IBM Corporation6 The broken file shredder - programming traps and pitfalls

IBM Research

© 2008 IBM Corporation7 The broken file shredder - programming traps and pitfalls

Avoiding data recovery with magnetic media

 Erase sensitive data before deleting it.

 To erase data, repeatedly reverse the direction of

magnetization. Simplistically, write 1, then 0, etc.

 Data on magnetic disks is encoded to get higher

capacity and reliability (MFM, RLL, PRML, ...).

Optimal overwrite patterns depend on encoding.

mfm = modified frequency modulation; rll = run length limited;

prml = partial response maximum likelihood

IBM Research

© 2008 IBM Corporation8 The broken file shredder - programming traps and pitfalls

File shredder pseudo code

/* Generic overwriting patterns. */

patterns = (10101010, 01010101,

11001100, 00110011,

11110000, 00001111,

00000000, 11111111, random)

for each pattern

overwrite file

remove file

IBM Research

© 2008 IBM Corporation9 The broken file shredder - programming traps and pitfalls

File shredder code, paraphrased

long overwrite(char *filename)

{

FILE *fp;

long count, file_size = filesize(filename);

if ((fp = fopen(filename, “w”)) == NULL)

/* error... */

for (count = 0; count < file_size; count += BUFFER_SIZE)

fwrite(buffer, BUFFER_SIZE, 1, fp);

fclose(fp); /* XXX no error checking */

return (count);

}

IBM Research

© 2008 IBM Corporation10 The broken file shredder - programming traps and pitfalls

What can go wrong?

 The program fails to overwrite the target file content

multiple times.

 The program fails to overwrite the target at all.

 The program overwrites something other than the

target file content.

 Guess what :-).

IBM Research

© 2008 IBM Corporation11 The broken file shredder - programming traps and pitfalls

Forensic tools to access (deleted) file information

application

operating

system

hardware

regular

application

vfs

ffs, ext3fs, etc.

device driver

disk blocks

forensic

application

IBM Research

© 2008 IBM Corporation12 The broken file shredder - programming traps and pitfalls

Coroner’s Toolkit discovery
(Note: details are specific to the RedHat 6 implementation)

[root test]# ls -il shred.me list the file with its file number

1298547 -rw-rw-r-- 1 jharlan jharlan 17 Oct 10 08:25 shred.me

[root test]# icat /dev/hda5 1298547 access the file by its file number

shred this puppy

[root test]# shred shred.me overwrite and delete the file

Are you sure you want to delete shred.me? y

1000 bytes have been overwritten.

The file shred.me has been destroyed!

[root test]# icat /dev/hda5 1298547 access deleted file by its number

shred this puppy the data is still there!

[root test]#

See: http://www.securityfocus.com/archive/1/138706 and follow-ups.

IBM Research

© 2008 IBM Corporation13 The broken file shredder - programming traps and pitfalls

Delayed file system writes

shred application

operating system

VM/file cache

disk drive

lots of file I/O here...

...but no file I/O here

IBM Research

© 2008 IBM Corporation14 The broken file shredder - programming traps and pitfalls

File shredder problem #1
Failure to overwrite repeatedly

 Because of delayed writes, the shred program

repeatedly overwrites the in-memory copy of the file,

instead of the on-disk copy.

for each pattern

overwrite file

IBM Research

© 2008 IBM Corporation15 The broken file shredder - programming traps and pitfalls

File shredder problem #2
Failure to overwrite even once

 Because of delayed writes, the file system discards

the in-memory updates when the file is deleted.

 The on-disk copy is never even updated!

for each pattern

overwrite file

remove file

IBM Research

© 2008 IBM Corporation16 The broken file shredder - programming traps and pitfalls

File shredder problem #3
Overwriting the wrong data

 The program may overwrite the wrong data blocks.
fopen(path,”w”) truncates the file to zero length, and
the file system may allocate different blocks for the
new data.

if ((fp = fopen(filename, “w”)) == NULL)

/* error... */

for (count = 0; count < file_size; count += BUFFER_SIZE)

fwrite(buffer, BUFFER_SIZE, 1, fp);

fclose(fp); /* XXX no error checking */

IBM Research

© 2008 IBM Corporation17 The broken file shredder - programming traps and pitfalls

“Fixing” the file shredder program

if ((fp = fopen(filename, “r+”)) == 0) open for update, not truncate

/* error... */

for (count = 0; count < file_size; count += BUFFER_SIZE)

fwrite(buffer, BUFFER_SIZE, 1, fp);

if (fflush(fp) != 0) application buffer => kernel

/* error... */

if (fsync(fileno(fp)) != 0) kernel buffer => disk

/* error... */

if (fclose(fp) != 0) and only then close the file

/* error... */

IBM Research

© 2008 IBM Corporation18 The broken file shredder - programming traps and pitfalls

Limitations of file shredding

 Write caches in disk drives and/or disk controllers may
ignore all but the last overwrite operation.

 Non-magnetic disks (flash, NVRAM) try to avoid
overwriting the same bits repeatedly. Instead they
create multiple copies of data.

 Not shredded: temporary copies from text editors,
copies in printer queues, mail queues, swap files.

 Continued...

IBM Research

© 2008 IBM Corporation19 The broken file shredder - programming traps and pitfalls

Limitations of file shredding (continued)

 File systems may relocate a file block when it is
updated, to reduce file fragmentation.

 Disk drives relocate blocks that become marginal.

 Journaling file systems may create additional
temporary copies of data (ext3fs: journal=data).

 Copy-on-write file systems (like Solaris ZFS) never
overwrite a disk block that is “in use”.

 None of these limitations exist with file systems that
encrypt each file with its own secret key.

IBM Research

© 2008 IBM Corporation20 The broken file shredder - programming traps and pitfalls

Lessons learned

 Step outside the high-level illusions that systems

create for users and developers.

– Optimizations in operating systems and in hardware may

invalidate a program completely.

 Don’t assume, verify. Intruders don’t play by the rules

of APIs or protocols.

– Examine raw disk blocks (network packets, etc.)

 Are we solving the right problem? Zero filling all free

disk space (and all swap!) may be more effective.

