
IBM Research

© 2008 IBM Corporation

The broken file shredder
Programming traps and pitfalls

Wietse Venema
IBM T.J.Watson Research Center
Hawthorne, NY, USA

IBM Research

© 2008 IBM Corporation2 The broken file shredder - programming traps and pitfalls

Overview

 What happens when a (UNIX) file is deleted.

 Magnetic disks remember overwritten data.

 How the file shredding program works.

 How the file shredding program failed to work.

 “Fixing” the file shredding program.

 Limitations of file shredding software.

IBM Research

© 2008 IBM Corporation3 The broken file shredder - programming traps and pitfalls

UNIX file system architecture

foo 123

bar 456

and so on...

Directory /home/you

Inode 123

data block #s

type=file/dir/etc

access perms

reference count

owner/group ID

data block

data block

data block

Data blocks
time stamps

file size

filename inode

IBM Research

© 2008 IBM Corporation4 The broken file shredder - programming traps and pitfalls

Deleting a UNIX file destroys structure, not content

foo 123

bar 456

and so on...

Directory /home/you

Inode 123

data block #s

type=file/dir/etc

access perms

reference count1

owner/group ID

data block

data block

data block

Data blocks
time stamps2

2status change time = time of deletion

file size
1zero references

foo

filename inode

IBM Research

© 2008 IBM Corporation5 The broken file shredder - programming traps and pitfalls

Persistence of deleted data

 Deleted file attributes and content persist in
unallocated disk blocks.

 Overwritten data persists as tiny modulations on
newer data.

 Information is digital, but storage is analog.

Peter Gutmann’s papers: http://www.cryptoapps.com/~peter/usenix01.pdf

and http://www.cs.auckland.ac.nz/~pgut001/pubs/secure_del.html

kool magnetic surface scan pix at http://www.veeco.com/ nanotheather

IBM Research

© 2008 IBM Corporation6 The broken file shredder - programming traps and pitfalls

IBM Research

© 2008 IBM Corporation7 The broken file shredder - programming traps and pitfalls

Avoiding data recovery with magnetic media

 Erase sensitive data before deleting it.

 To erase data, repeatedly reverse the direction of

magnetization. Simplistically, write 1, then 0, etc.

 Data on magnetic disks is encoded to get higher

capacity and reliability (MFM, RLL, PRML, ...).

Optimal overwrite patterns depend on encoding.

mfm = modified frequency modulation; rll = run length limited;

prml = partial response maximum likelihood

IBM Research

© 2008 IBM Corporation8 The broken file shredder - programming traps and pitfalls

File shredder pseudo code

/* Generic overwriting patterns. */

patterns = (10101010, 01010101,

11001100, 00110011,

11110000, 00001111,

00000000, 11111111, random)

for each pattern

overwrite file

remove file

IBM Research

© 2008 IBM Corporation9 The broken file shredder - programming traps and pitfalls

File shredder code, paraphrased

long overwrite(char *filename)

{

FILE *fp;

long count, file_size = filesize(filename);

if ((fp = fopen(filename, “w”)) == NULL)

/* error... */

for (count = 0; count < file_size; count += BUFFER_SIZE)

fwrite(buffer, BUFFER_SIZE, 1, fp);

fclose(fp); /* XXX no error checking */

return (count);

}

IBM Research

© 2008 IBM Corporation10 The broken file shredder - programming traps and pitfalls

What can go wrong?

 The program fails to overwrite the target file content

multiple times.

 The program fails to overwrite the target at all.

 The program overwrites something other than the

target file content.

 Guess what :-).

IBM Research

© 2008 IBM Corporation11 The broken file shredder - programming traps and pitfalls

Forensic tools to access (deleted) file information

application

operating

system

hardware

regular

application

vfs

ffs, ext3fs, etc.

device driver

disk blocks

forensic

application

IBM Research

© 2008 IBM Corporation12 The broken file shredder - programming traps and pitfalls

Coroner’s Toolkit discovery
(Note: details are specific to the RedHat 6 implementation)

[root test]# ls -il shred.me list the file with its file number

1298547 -rw-rw-r-- 1 jharlan jharlan 17 Oct 10 08:25 shred.me

[root test]# icat /dev/hda5 1298547 access the file by its file number

shred this puppy

[root test]# shred shred.me overwrite and delete the file

Are you sure you want to delete shred.me? y

1000 bytes have been overwritten.

The file shred.me has been destroyed!

[root test]# icat /dev/hda5 1298547 access deleted file by its number

shred this puppy the data is still there!

[root test]#

See: http://www.securityfocus.com/archive/1/138706 and follow-ups.

IBM Research

© 2008 IBM Corporation13 The broken file shredder - programming traps and pitfalls

Delayed file system writes

shred application

operating system

VM/file cache

disk drive

lots of file I/O here...

...but no file I/O here

IBM Research

© 2008 IBM Corporation14 The broken file shredder - programming traps and pitfalls

File shredder problem #1
Failure to overwrite repeatedly

 Because of delayed writes, the shred program

repeatedly overwrites the in-memory copy of the file,

instead of the on-disk copy.

for each pattern

overwrite file

IBM Research

© 2008 IBM Corporation15 The broken file shredder - programming traps and pitfalls

File shredder problem #2
Failure to overwrite even once

 Because of delayed writes, the file system discards

the in-memory updates when the file is deleted.

 The on-disk copy is never even updated!

for each pattern

overwrite file

remove file

IBM Research

© 2008 IBM Corporation16 The broken file shredder - programming traps and pitfalls

File shredder problem #3
Overwriting the wrong data

 The program may overwrite the wrong data blocks.
fopen(path,”w”) truncates the file to zero length, and
the file system may allocate different blocks for the
new data.

if ((fp = fopen(filename, “w”)) == NULL)

/* error... */

for (count = 0; count < file_size; count += BUFFER_SIZE)

fwrite(buffer, BUFFER_SIZE, 1, fp);

fclose(fp); /* XXX no error checking */

IBM Research

© 2008 IBM Corporation17 The broken file shredder - programming traps and pitfalls

“Fixing” the file shredder program

if ((fp = fopen(filename, “r+”)) == 0) open for update, not truncate

/* error... */

for (count = 0; count < file_size; count += BUFFER_SIZE)

fwrite(buffer, BUFFER_SIZE, 1, fp);

if (fflush(fp) != 0) application buffer => kernel

/* error... */

if (fsync(fileno(fp)) != 0) kernel buffer => disk

/* error... */

if (fclose(fp) != 0) and only then close the file

/* error... */

IBM Research

© 2008 IBM Corporation18 The broken file shredder - programming traps and pitfalls

Limitations of file shredding

 Write caches in disk drives and/or disk controllers may
ignore all but the last overwrite operation.

 Non-magnetic disks (flash, NVRAM) try to avoid
overwriting the same bits repeatedly. Instead they
create multiple copies of data.

 Not shredded: temporary copies from text editors,
copies in printer queues, mail queues, swap files.

 Continued...

IBM Research

© 2008 IBM Corporation19 The broken file shredder - programming traps and pitfalls

Limitations of file shredding (continued)

 File systems may relocate a file block when it is
updated, to reduce file fragmentation.

 Disk drives relocate blocks that become marginal.

 Journaling file systems may create additional
temporary copies of data (ext3fs: journal=data).

 Copy-on-write file systems (like Solaris ZFS) never
overwrite a disk block that is “in use”.

 None of these limitations exist with file systems that
encrypt each file with its own secret key.

IBM Research

© 2008 IBM Corporation20 The broken file shredder - programming traps and pitfalls

Lessons learned

 Step outside the high-level illusions that systems

create for users and developers.

– Optimizations in operating systems and in hardware may

invalidate a program completely.

 Don’t assume, verify. Intruders don’t play by the rules

of APIs or protocols.

– Examine raw disk blocks (network packets, etc.)

 Are we solving the right problem? Zero filling all free

disk space (and all swap!) may be more effective.

