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Abstract
 Caring for security at requirements engineering time is a
message that has finally received some attention recently.
However, it is not yet very clear how to achieve this
systematically through the various stages of the
requirements engineering process.

The paper presents a constructive approach to the
modeling, specification and analysis of application-
specific security requirements. The method is based on a
goal-oriented framework for generating and resolving
obstacles to goal satisfaction. The extended framework
addresses malicious obstacles (called anti-goals) set up by
attackers to threaten security goals. Threat trees are built
systematically through anti-goal refinement until leaf
nodes are derived that are either software vulnerabilities
observable by the attacker or anti-requirements
implementable by this attacker. New security requirements
are then obtained as countermeasures by application of
threat resolution operators to the specification of the anti-
requirements and vulnerabilities revealed by the analysis.
The paper also introduces formal epistemic specification
constructs and patterns that may be used to support a
formal derivation and analysis process. The method is
illustrated on a web-based banking system for which
subtle attacks have been reported recently.

1. Introduction
Security has become an increasingly growing concern in
the internet age. The number of security incidents reported
has been growing exponentially over the past decade [7].
Software applications are increasingly ubiquitous,
heterogeneous, mission-critical and vulnerable [19].
Attackers are more and more malicious and use
increasingly sophisticated attack technology. The
consequences of attacks may become more devastating up
to the point of breaking severe safety-critical concerns.
For example, there have been reports about denial of
service on medical records that prevented urgent surgery
from being undertaken under the right conditions [7].
Unsurprisingly, the major source of vulnerability has been

recognized to be poor-quality software [41].

The state of the art in security engineering has been fairly
unbalanced so far. As Wing pointed out, the “strength” of
security guarantee provided by current security technology
is inversely proportional to the “size” of the software layer
at which the technology applies [42].  At the bottom, the
crypto layer offers solid and well-established techniques
for basic services such as encryption/decryption or
signature; the state of the art on this layer precisely tells us
what can be guaranteed, what cannot and what are the
problems still left open [37]. Above the crypto layer, the
security protocol layer offers a wide range of standard
procedures for services such as secure communication,
authentication or key exchange; the state of the art on this
layer provides us with specific logics [5] and formal
techniques for verifying security protocols to point out
errors or hidden assumptions [18, 29, 13, 9]. Above the
security layer, the system layer provides standard services,
implemented in some programming language, such as
remote file access; services like SSH, SSL or SSHTP and
language technologies like Authenticode, Active X or Java
provide some level of security but are subject to multiple
types of attacks such as denial of service or spoofing.
Above the system layer, the application layer offers
services such as web-based banking operations that must
implement application-specific security requirements in
terms of primitives from lower layers. The state of the art
in security enginering at the application layer is much
more limited [42, 41].
This paper focusses on security enginering at the
application layer exclusively. A necessary condition for
application software to be secure is obviously that all
application-specific security requirements be met by the
software. Such requirements must therefore be engineered
with great care. They need to be explicit, precise,
adequate, non-conflicting with other requirements and
complete. In particular, application-specific requirements
should anticipate application-specific attack scenarios
such as, e.g., attacks on a web-based banking application
that may result in disclosure of sensitive information about
bank accounts or in fraudulous money transfer. Security
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requirements engineering must thus address a broader
system perspective where the software environment is
explicitly modeled and analyzed as well.
The elaboration, specification, analysis and documentation
of application-specific security requirements is an area
that has been left virtually unexplored by requirements
engineering research to date (with a very few recent
exceptions discussed at the end of this paper). A
requirements engineering (RE) technique for security-
critical systems should ideally meet the following meta-
requirements.

• Early deployment: In view of the criticality of security
requirements, the technique should be applicable as
early as possible in the RE process, that is, to
declarative assertions as they arise from stakeholder
interviews and documents (as opposed to, e.g., later
state machine models).

• Incrementality: The technique should support the
intertwining of model building and analysis and
therefore allow for reasoning about partial models.

• Reasoning about alternatives: The technique should
make it possible to represent and assess alternative
options so that a “best” route to security can be selected.

• High assurance: The technique should allow for formal
analysis when and where needed so that compelling
evidence of security assurance can be provided.

• Security-by-construction: To avoid the endless cycle of
defect fixes generating new defects, the RE process
should be guided so that a satisfactory level of security
is guaranteed by construction.

• Separation of concerns: the technique should keep
security requirements separate from other types of
requirements so as to allow for interaction analysis [20,
35].

This paper presents a method for elaborating security
requirements aimed at addressing the above meta-
requirements. The general idea is to build two models
iteratively and concurrently:

• a model of the system-to-be that covers both the
software and its environment and inter-relates their
goals, agents, objects, operations, requirements and
assumptions;

• an anti-model, derived from the model, that exhibits
how specifications of model elements could be
maliciously threatened, why and by whom.

In this overall picture, security requirements are
elaborated systematically by iterating the following steps:
(a) instantiate specification patterns associated with
property classes such as confidentiality, privacy, integrity,

availability, authentication or non-repudiation; (b) derive
anti-model specifications threatening such specifications;
(c) derive alternative countermeasures to such threats and
define new requirements by selection of alternatives that
best meet other quality requirements from the model.
Our method builds on a goal-oriented framework we
developed before for generating and resolving obstacles to
requirements achievement [21, 22]. Our extension to
malicious obstacles allows the obstacle refinement process
to be guided by the attacker’s own goals and by the target
of deriving observable vulnerabilities and implementable
threats. The extension also includes security-specific
operators for resolving malicious obstacles.

The paper is organized as follows. Section 2 briefly
reviews some background material on goal-oriented
requirements engineering used in the sequel. Section 3
introduces security specification patterns together with
some epistemic extensions to our real-time temporal logic
needed to formalize them. Section 4 shows how our
techniques for generating and resolving obstacles to goal
achievement are extended to integrate malicious obstacles
set up by attackers who want to break security goals.
Section 5 addresses the generation of countermeasures.
Section 6 then illustrates our method on the engineering of
security requirements for web-based banking services; we
show in particular how a critical episode from a real attack
recently reported can be generated formally using our
technique. To conclude, we summarize the contribution,
compare it with related efforts and discuss various issues
left open by our approach.

2. Background

A goal is a prescriptive statement of intent about some
system whose satisfaction in general requires the
cooperation of some of the agents forming that system.
Agents are active components such as humans, devices,
legacy software or software-to-be components that play
some role towards goal satisfaction. Some agents thus
define the software whereas others define the
environment. Goals may refer to services to be provided
(functional goals) or to quality of service (non-functional
goals). Unlike goals, domain properties are descriptive
statements about the environment such as physical laws,
organizational norms or policies, etc.

Goals are organized in AND/OR refinement-abstraction
hierarchies where higher-level goals are in general
strategic, coarse-grained and involve multiple agents
whereas lower-level goals are in general technical, fine-
grained and involve less agents [11, 12]. In such
structures, AND-refinement links relate a goal to a set of
subgoals (called refinement) possibly conjoined with



domain properties; this means that satisfying all subgoals
in the refinement is a sufficient condition in the domain
for satisfying the goal. OR-refinement links may relate a
goal to a set of alternative refinements; this means that
satisfying one of the refinements is a sufficient condition
in the domain for satisfying the goal.
Goal refinement ends when every subgoal is realizable by
some individual agent assigned to it, that is, expressible in
terms of conditions that are monitorable and controllable
by the agent [24]. A requirement is a terminal goal under
responsibility of an agent in the software-to-be; an
expectation  is a terminal goal under responsibility of an
agent in the environment (unlike requirements,
expectations cannot be enforced by the software-to-be).
Goals prescribe intended behaviors; they can be
formalized in a real-time temporal logic [11]. Keywords
such as Achieve, Avoid, Maintain are used as a lightweight
alternative to characterize goals according to the temporal
behavior pattern they prescribe. Softgoals prescribe
preferred behaviors; they can be used for selecting
preferred alternatives in an AND/OR goal refinement graph
[8].

Goals are operationalized into specifications of operations
to achieve them [11, 25]. In the specifcation of an
operation, a distinction is made between domain pre- and
postconditions that capture what any application of the
operation means in the application domain, and required
pre-, trigger, and postconditions that capture requirements
on the operations that are necessary for achieving the
underlying goals.
Goals refer to objects that can be incrementally derived
from their specification to produce a structural model of
the system (represented by UML class diagrams).  Objects
have states defined by their attributes and links to other
objects; they are passive (entities, associations, events) or
active (agents). Agents are related together via their
interface made of object attributes they monitor and
control, respectively [32].
Obstacles were first introduced in [33] as a means for
identifying goal violation scenarios. In declarative terms,
an obstacle to some goal is a condition whose satisfaction
may prevent the goal from being achieved. An obstacle O
is said to obstruct  a goal G in some domain characterized
by a set of domain properties Dom iff

{O, Dom} |= ¬ G obstruction
Dom |≠  ¬ O domain consistency

Obstacle analysis consists in taking a pessimistic view at
the goals, requirements and expectations being elaborated.
The principle is to identify as many ways of obstructing
them as possible in order to resolve each such obstruction
when likely and critical so as to produce more complete

requirements for more robust systems. Formal techniques
for generation and AND/OR refinement of obstacles are
available [22]. The basic technique amounts to a
precondition calculus that regresses goal negations ¬ G
backwards through known domain properties Dom.
Formal obstruction patterns may be used as a cheaper
alternative to shorcut formal derivations. Both techniques
allow domain properties involved in obstructions to be
incrementally elicited as well.
Obstacles that appear to be likely and critical need to be
resolved once they have been generated. Resolution tactics
are available for generating alternative resolutions,
notably, goal substitution, agent substitution, goal
weakening, goal restoration, obstacle prevention and
obstacle mitigation [22]. The selection of preferred
alternatives depends on the degree of criticality of the
obstacle, its likelihood of occurrence and on high-priority
softgoals that may drive the selection. The selected
resolution may then be deployed at specification time,
resulting in specification transformation [22], or at
runtime through obstacle monitoring [15].
In the context of this paper,

• security concerns are captured by security goals that
need to be made precise and refined until reaching
security requirements on the software and expectations
on the environment (the latter may capture security
policies in the environment);

• attackers are malicious agents in the environment;

•  threats are obstacles intentionally set up by attackers;

•  assets to be protected against threats correspond to
passive or active objects.

There is thus no need for introducing additional
abstractions in the underlying meta-model to cope with
security; our RE environment kernel can therefore be used
for graphical editing, model querying, report generation,
traceability management, goal model checking and goal-
oriented animation [31, 34].

3. Specification Patterns for Security Goals
The preliminary elicitation of security-related goals is
driven by application-specific instantiations of generic
specification patterns. The patterns are associated with
specializations of the SecurityGoal meta-class, namely,
Confidentiality, Integrity, Availability, Privacy, Authentication and
Non-repudiation goal subclasses. Patterns refer to meta-
classes from the language meta-model (such as Object and
Agent). For each subclass of SecurityGoal, the instantiation
of the corresponding specification pattern to “sensitive”
attributes/associations from the object model yields
corresponding candidates for application-specific security



goals (the latter may then need to be refined if necessary).

To support formal analysis, our specification patterns may
be formalized in a first-order, real-time linear temporal
logic [22] augmented with epistemic constructs for
security-related predicates.
In particular, the epistemic operator KnowsVag is defined on
state variables as follows:

KnowsVag (v) ≡   ∃x: Knowsag (x = v)   (“knows value”)

Knowsag (P) ≡   Beliefag (P) ∧ P (“knows property”)

where the operational semantics of the epistemic operator
Beliefag(P)  is “P is among the properties stored in the local
memory of agent ag”. Domain-specific axioms must make
it precise under which conditions property P does appear
and disappear in the agent’s memory. An agent thus knows
a property if that property is found in its local memory
and it is indeed the case that the property holds.
The following temporal logic notations are used in this
paper: “P ⇒ Q” means “o (P → Q)” where the temporal
operator “o” means “in every future state” and “→”
denotes logical implication; “o”  means “in the next state”;
“◊≤d” means “some time in the future within d time units”.
For example, the specification pattern for Confidentiality
goals defines confidentiality in a generic way:

Goal  Avoid [SensitiveInfoKnownByUnauthorizedAgent]
FormalSpec ∀ ag: Agent, ob: Object

   ¬ Authorized (ag, ob.Info) ⇒  ¬ KnowsVag (ob.Info)

The Authorized predicate is generic and has to be
instantiated through an application-specific domain
definition. For example, for web-based banking we would
certainly consider the instantiation Object/Account while
searching through the object model for sensitive
information; we might then introduce the following
instantiating definition:

∀ ag: Agent, acc: Account
 Authorized (ag, acc) ≡  

   Owner (ag, acc) ∨  Proxy (ag, acc) ∨  Manager (ag, acc)

Sensitive information about accounts includes the pair of
objects (Acc#, PIN). The latter are defined in the object
model as partOf the aggregation Account and interrelated
through the association Matching.
The instantiation of the Confidentiality  specification pattern
to such sensitive information yields the following
confidentiality goal as candidate for inclusion in the goal
model:

Goal  Avoid [AccountNumber&PinKnownByUnauthorized]
FormalSpec ∀ p: Person, acc: Account

¬  (Owner (p, acc) ∨  Proxy (p, acc) ∨  Manager (p, acc) )

 ⇒   ¬ [ KnowsVp (acc.Acc#) ∧ KnowsVp (acc.PIN) ])

The same principle may be used for eliciting instantiations

of the following specification patterns for Privacy, Integrity
and Availability goals:

Goal Maintain [PrivateInfoKnownOnlyIfAuthorizedByOwner]

FormalSpec ∀ ag, ag’: Agent, ob: Object

KnowsVag (ob.Info) ∧ OwnedBy (ob.Info, ag’) ∧ ag ≠ ag’

     ⇒  AuthorizedBy (ag, ob.Info, ag’)

Goal Maintain [ObjectInfoChangeOnlyIfCorrectAndAuthorized]
FormalSpec ∀ ag: Agent, ob: Object, v  : Value

ob.Info = v ∧  o (ob.Info ≠ v) ∧  UnderControl (ob.Info, ag)

     ⇒  Authorized (ag, ob.Info) ∧  o Integrity (ob.Info)

Goal Achieve [ObjectInfoUsableWhenNeededAndAuthorized]
FormalSpec ∀ ag: Agent, ob: Object, v  : Value

Needs (ag, ob.Info) ∧ Authorized (ag, ob.Info)
     ⇒  ◊≤d  Using (ag, ob.Info)

Specifications of application-specific security goal
candidates are thus obtained from such specification
patterns by (a) instantiating meta-classes such as Object,
Agent and generic attributes such as  Info to application-
specific sensitive classes, attributes and associations in the
object model, and (b) specializing predicates such as
Authorized, UnderControl, Integrity or Using through
substitution by application-specific definitions.
In the context of security it may be worth recalling that
sensitive objects found in the object model may be either
passive (entities, associations, events) or active (agents,
e.g., programs).

4. Building Intentional Threat Models
As noted in [22], obstacles may obstruct safety or security
goals; obstacle refinement trees then correspond to the
popular fault trees used for modeling or documenting
hazards in safety-critical systems [26] and to the popular
threat trees used for modeling or documenting potential
attacks in security-critical systems [2, 38, 30, 17]. There
are two significant differences, however.

• Obstacle trees are goal-anchored as their root is a goal
negation; the analyst thus knows exactly where to start
the analysis from - it is often much easier to concentrate
first on what is desired rather than on what is not
desired.

• Obstacles can be formally generated by regressing goal
negations through domain properties and other goal
assertions, or by using formal obstruction and
refinement patterns [20, 22, 12].

In the context of security engineering, standard obstacle
analysis appears to be too limited for handling malicious
obstacles; the reasons are the following.

• The goals underlying malicious obstacles are not
captured; one can therefore not use them for driving the



obstacle refinement process.

• There is no modeling of attacker agents and their
capabilities in terms of operations they can perform and
objects they can monitor/control; one can therefore not
reason about them.

• Software vulnerabilities are not explicit in standard
models; one can therefore not reason about them or,
better, derive them.

• The outcome of the obstacle likelihood and criticality
assessment process may be quite different; for example,
standard obstacle analysis for a ground collision
avoidance component of an air traffic control system
might miss the obstacle of multiple planes crashing into
adjacent buildings at almost the same time, or assess it
to be extremely unlikely, whereas the explicit
incorporation of terrorist agents and their goal of
causing major damage to symbols of economic power
might result in totally different conclusions.

Richer models should thus be built to capture attackers,
their goals and capabilities, the software vulnerabilities
they can monitor or control, and attacks that satisfy their
goals based on their capabilities and on the system’s
vulnerabilities.
Let us call anti-models such models and anti-goals the
attacker’s own goals, including malicious obstacles to
security goals. Anti-goals should of course be
distinguished from the goals the system under
consideration should satisfy. Anti-models should lead to
the generation of more subtle threats and the derivation of
more robust security requirements as anticipated
countermeasures to such threats.
Table 1 describes a procedure for building intentional anti-
models in a systematic way. This procedure corresponds
to a dual version of the goal-oriented requirements
elaboration method we had extensive experience with for
many years [23, 31]. The steps there are ordered by data
dependencies and generally intertwined.

1. Get initial anti-goals by negating relevant
Confidentiality, Privacy, Integrity and Availability goal
specification patterns instantiated to sensitive objects
from the object model.

2. For each such anti-goal, elicit potential attacker agents
that might own the anti-goal, from questions such as
“WHO can benefit from this anti-goal?” (Application-
specific specializations of known attacker taxonomies
may help answering such questions).

3. For each anti-goal and corresponding attacker class(es)
identified, elicit the attacker’s higher-level anti-goals
from questions such as “WHY would instances of this
attacker class want to achieve this anti-goal?”. Such

questions may be asked recursively to elicit more and
more abstract anti-goals yielding threat rationales
together with other potential threats from alternative
refinements of those higher-level anti-goals.

4. Elaborate the anti-goal AND/OR graph by AND-
refining/abstracting anti-goals along alternative
branches, with the aim of deriving terminal anti-goals
that are realizable either by the identified attacker
agents or by attackee software agents. The former are
anti-requirements  assigned to the attacker whereas the
latter are vulnerabilities  assigned to the attackee. (This
step may be performed informally by asking
HOW/WHY questions [23], or formally by regression
through the goal model and the domain theory [20] or
by use of refinement patterns [12, 24] and obstruction
patterns [22].)

5. Derive the object and agent anti-models from anti-
goal specifications. The boundary between the anti-
machine (under the attacker’s control) and the anti-
environment (which includes the software attackee)
are thereby derived together with monitoring/control
interfaces [24].

6. AND/OR-operationalize all anti-requirements in
terms of potential capabilities of the corresponding
attacker agent [25] – the latter may include blind or
intelligent searching, eavesdropping, deciphering,
spoofing, cookie installation, etc.

Table 1:  Anti-Model Building Method

In Step 4, an anti-goal is said to be realizable by some
agent if it is formulated in terms of conditions monitorable
and controllable by the agent. (A more technical definition
of realizability may be found in [24].)  Note that the
vulnerabilities derived by anti-goal refinement in Step 4
rightly fit the Common Criteria definition of vulnerability,
namely, “a condition of an agent that, in conjunction with
a threat, can lead to security requirement violation” [6].
As indicated in Step 4, the AND/OR refinement/abstraction
process may be guided by the following techniques:

• asking “HOW?” and “WHY?” questions about the anti-
goals already found;

• regressing anti-goal specifications through domain
properties to find out anti-goal preconditions that are
satisfiable in the domain [22] – this corresponds to
situations where the attacker exploits features of the
domain to achieve her anti-goals;

• regressing anti-goal specifications through goal
specifications from the primal model to find out anti-
goal preconditions that are satisfiable by the software
[20] – this corresponds to situations where the attacker
exploits features of the software itself to achieve her



anti-goals;

• applying formal refinement patterns – notably, the
“milestone”, “decomposition-by-case”, “resolve lack of
monitorability” and “resolve lack of controllability” patterns
[12, 24] and obstruction patterns [22].

For example, the “milestone” pattern in Fig.1 may lead for
a web banking application to the refinement of the anti-
goal PaymentMediumKnownByUnauthorized shown in Fig.2
(the bold circle associated with the AND-node there
indicates that the refinement is provably complete).

Section 6 illustrates the use of the anti-model building
method in greater detail; in particular, it shows how anti-
goals are regressed formally through domain properties.
The resulting anti-model relates attackers, their anti-goals,
referenced objects and anti-goal operationalizations to the
attackees, their goals, objects, operations and
vulnerabilities.

When goals are formalized in our real-time temporal logic,
the logical models of anti-goals are sets of attack
scenarios. Bounded SAT solvers can then be used to
generate such scenarios automatically [34].

5. Generating Countermeasures
Once intentional anti-models have been built
systematically in this way, the next step in the model/anti-
model building cycle is to consider alternative
countermeasures to the various vulnerabilities and anti-
requirements found. A preferred countermeasure is then
selected based on (a) the severity and likelihood of the
corresponding threat, and (b) non-functional goals that
have been identified in the primal goal model. The
selected countermeasure yields a new security goal to be
integrated in the latter model.

Alternative countermeasures may be produced
systematically using operators similar to those described
in [22] for resolving obstacles, e.g.,

• Goal substitution : develop an alternative refinement of
the parent goal to prevent the original subgoal from
being threatened by the anti-goal;

• Agent substitution: replace a vulnerable agent assigned
to a threatened goal by a less vulnerable one for the
threatening anti-goal;

• Goal weakening: weaken the specification of the goal
being threatened so as to make it circumvent the
threatening anti-goal;

• Goal restoration : introduce a new goal prescribing
appropriate restoration measures in states where the
goal has been threatened by the anti-goal;

• Anti-goal mitigation: tolerate the anti-goal but mitigate
its effects;

• Anti-goal prevention: add a new goal requiring the
anti-goal to be Avoided.

The above list may be extended with security-specific
operators such as the following:
• Protect vulnerability: make the derived vulnerability

condition unmonitorable by the attacker.

• Defuse threat: make the derived anti-requirement
condition uncontrollable by the attacker.

• Avoid vulnerability: add a new goal requiring the
software vulnerability condition to be Avoided.   

Once alternative anti-goal resolutions have been produced
by application of such operators a preferred one has to be
selected based on how critical the goal being threatened is
and on how well the resolution meets other non-functional
goals. The NFR qualitative framework may be used here
to support the selection process [8].
The new security goal thereby retained has to be AND/OR
refined in turn until requirements/expectations are
reached. A new model/anti-model building cycle may then
be required.

For anti-goals that are not too severe, resolutions may be
deferred from specification time to run time using anti-
goal monitoring and intrusion detection technology [15,
16, 4].

6. Case Study: Web-Based Banking Services
We apply our anti-model building method for web-based
banking services and then illustrate what the resolutions
might look like.
Step 1 results in instantiating the confidentiality goal
pattern Avoid [SensitiveInfoKnownByUnauthorizedAgent] into:

C ⇒ ◊ M M ⇒ ◊◊  T

C ⇒ ◊  T

Fig. 1 – The milestone pattern
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Avoid  [AccountNumber&PinKnownByUnauthorized]

(see Section 3). The instantiated formal specification is
then negated which yields

AntiGoal Achieve [AccountNumber&PinKnownByUnauthorized]
FormalSpec  ◊ ∃ p: Person, acc: Account

¬  [ Owner (p, acc) ∨  Proxy (p, acc) ∨  Manager (p, acc) ]

 ∧  KnowsVp (acc.Acc#) ∧ KnowsVp (acc.PIN)

By asking WHO could benefit from the above anti-goal
one could in Step 2 elicit potential attacker agent classes
such as Thief, Hacker, BankQualityAssuranceTeam, etc.
Consider the case of a Thief agent, for example. Step 3
would lead to the elicitation of a parent anti-goal such as

Achieve [PaymentMediumKnownByThief]

and the grand-parent anti-goal
Achieve [MoneyStolenFromBankAccounts]

Lack of space prevents us from building the entire anti-
goal, anti-object and anti-operation models associated
with the Thief agent through steps 4-6 of the anti-model
building method. For example, the milestone pattern
instantiation in Fig. 2 produces two other child nodes of
the anti-goal Achieve[PaymentMediumKnownByThief], shown
in Fig. 3, namely,

Achieve [ThiefKnowsWhichBank] ,
Achieve [ThiefKnowsAccountStructure]

Let us now focus on the derivation of refinements for the
antigoal

Achieve [AccountNumber&PinKnownByUnauthorized]

along one branch of the anti-goal AND/OR graph.
Looking at the above formal specification of this anti-goal
we ask ourselves “what are sufficient conditions in the domain
for someone unauthorized to know both the number and PIN of an
account simultaneously?”. We may also use the symmetry of
the association Matching between account numbers and
PINs in the object model and its multiplicity [1..1, 1..N] . As
a result we elicit two symmetrical domain properties,
namely,

∀ p: Person, acc: Account
¬  [ Owner (p, acc) ∨  Proxy (p, acc) ∨  Manager (p, acc) ]
∧  KnowsVp (acc.Acc#)
∧  (∃ x: PIN) (Found (p, x) ∧  Matching (x, acc.Acc#)

⇒   KnowsVp (acc.Acc#) ∧ KnowsVp (acc.PIN)

and
¬  [ Owner (p, acc) ∨  Proxy (p, acc) ∨  Manager (p, acc) ]

∧  KnowsVp (acc.PIN)

∧  (∃ y: Acc#) (Found (p, y) ∧  Matching (acc.PIN, y)
⇒   KnowsVp (acc.Acc#) ∧ KnowsVp (acc.PIN)

We may now formally regress the above anti-goal Achieve
[AccountNumber&PinKnownByUnauthorized] through each of
these domain properties to obtain two sub-goals as

alternative preconditions for achieving this anti-goal. (The
technique amounts to a kind of backward chaining through
LTL properties, see [22] for details.)  We thereby obtain
an OR-refinement of that anti-goal into two alternative,
symmetrical anti-subgoals, namely,

AntiGoal Achieve [AccountKnown&MatchingPinFound]
FormalSpec ◊ ∃ p: Person, acc: Account

¬  [ Owner (p, acc) ∨  Proxy (p, acc) ∨  Manager (p, acc) ]

∧  KnowsVp (acc.Acc#)
∧  (∃ x: PIN) [ Found (p, x) ∧  Matching (x, acc.Acc#) ]

and
AntiGoal  Achieve [PinKnown&MatchingAccountFound]

FormalSpec ◊ ∃ p: Person, acc: Account
¬  [ Owner (p, acc) ∨  Proxy (p, acc) ∨  Manager (p, acc) ]

∧  KnowsVp (acc.PIN)
∧  (∃ y: Acc#) [ Found (p, y) ∧  Matching (acc.PIN, y) ]

The refinement process goes on until software
vulnerabilities  and anti-requirements realizable by the
Thief agent are reached. Fig. 3 shows a portion of the anti-
goal graph built thereby.

 Accounts
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Fig. 3 –  Portion of an anti-goal model for web banking services
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The derived anti-requirements assignable to the Thief agent
are, in one alternative refinement,

PinCheckedForAccountNumberMatch,
CheckIteratedOnOtherPinsIfNoMatch

and, in the other alternative,
AccountNumberCheckedForPinMatch,
CheckIteratedOnOtherAccountNumbersIfNoMatch

Those anti-requirements are operationalizable using web
technology, see [36] for details. The anti-requirements in
the second alternative is more subtle and corresponds to a
sophisticated, real attack reported in [36].

The corresponding vulnerabilities we derived are
RepeatablePinCheckFromAccountNumber

and
RepeatableAccountNumberCheckFromPin,

respectively.
Once this anti-model has been built we need to move to
countermeasures resulting in new security goals.  In this
case the resolution operator

Avoid [Vulnerability]

seems required in view of the criticality of the
vulnerabilities. This will produce two new, conjoined
security goals:

Avoid [RepeatablePinCheckFromAccountNumber],

Avoid [RepeatableAccountNumberCheckFromPin]

The first new goal corresponds to the usual limitation of
the number of PIN entries (e.g., to three attempts). The
second new goal prevents the possibility of exhaustive
searching for account numbers that match some fixed PIN
number. These goals have to be refined in turn until
requirements on the software and expectations on the
environment are reached. A new anti-model building cycle
may be undertaken for these new goals, if necessary.

7. Related work
A few proposals have been made recently for extending
existing modeling notations to capture attacker features at
requirements engineering time - notably, through misuse
cases that complement UML use cases [40, 1]. Anti-
requirements were suggested as requirements on the
attacker to break existing requirements [10]. This notion is
elaborated further in [27] where abuse frames are
introduced to define the scope and boundary of anti-
requirements.
Goal-based approaches have already been used to address
security concerns at requirements engineering time,
notably, through security goal taxonomies. For example,
the NFR framework allows known security properties to
be organized as AND/OR goal graphs [8]. Anton, Earp and
Reese propose a rich taxonomy of privacy goals based on

their analysis of 23 internet privacy policies for a variety
of companies in health care industries [3].
The principle of building a catalogue of known threat tree
patterns for documentation and reuse through instantiation
is nicely illustrated in [30].
The work closest in spirit to ours is [28]; they propose an
extension of the i* agent-based requirements engineering
framework [8] to identify attackers, analyze vulnerabilities
through agent dependency links and suggest counter-
measures. The main difference is that they start from
agents involved in the system rather than goals being
threatened. In contrast with our approach, they identify
insider attackers only, that is, system stakeholders that
were identified before in the primal model and might be
suspect. The malicious goals owned by such attackers are
not modelled explicitly. Their methodology provides no
formal techniques for building threat models. The strength
of their approach is the propagation of vulnerabilities
along agent dependency links.

Dwyer and colleagues have built an extensive catalogue of
formal specification patterns [14]. Their patterns are also
based on temporal behaviors but not specific to security.

Sheyner et al use model checking technology to generate
and analyze attack graphs [39]. Given a state machine
model N of the network under attack, a model A  of the
attacker’s capabilities and a desired security property S,
their tools produce all possible counterexample scenarios
found when trying to verify

N, A |  S
Our work may be seen as an “upstream” complement to
their approach; it can be applied sooner in the process, to
point out earlier security problems at the requirements
level, by deriving threats through deductive inference
from partial, declarative goal/anti-goal models - as
opposed to operational state machine models that need to
be completely built up before their technique can be
applied.

8. Conclusion
Our focus in this paper was on security enginering at the
application layer exclusively; compared with the crypto,
protocol and system/language layers the application layer
has received much less attention to date. As a prerequisite
for security assurance at this layer, analysts must ensure
that application-specific security requirements are made
explicit, precise, adequate, non-conflicting with other
requirements and complete.
We presented a requirements engineering method for
elaborating security requirements based on the
incremental building and specification of two concurrent



models: an intentional model of the system-to-be and an
intentional anti-model yielding vulnerabilities and
capabilities required for achieving the anti-goals of
threatening security goals from the original model. The
method allows threat trees to be derived systematically
through anti-goal refinement until leaf nodes are reached
that are either attackee vulnerabilities observable by the
attacker or anti-requirements implementable by this
attacker. The original model is then enriched with new
security requirements derived as countermeasures to the
anti-model.
Our approach extends the KAOS framework for goal-
oriented requirements engineering [11, 22, 23] in several
ways:

• it extends the specification language with epistemic
constructs for reasoning about the attacker’s knowledge;

• it provides specification patterns for formal elicitation
of candidate security requirements to start the analysis;

• it introduces a duality principle  for richer modeling of
threats; system goals, requirements, expectations about
the environment and software services are transposed to
malicious obstacles to security requirements,
implementable anti-requirements, software
vulnerabilities and attacker capabilities, respectively;

• it supports the obstacle likelihood and severity
assessment phase by linking malicious obstacles to
attackers and their malicious goals.

Our approach is intended to provide constructive guidance
in early elaboration of security concerns; it supports
incremental reasoning on partial models and formal
derivation when higher assurance is needed; alternative
threats and countermeasures may be modelled explicitly.

Although the original goal-oriented model building
method has been validated extensively (over 25 industrial
projects in a wide variety of domains),  its transposition to
anti-model building has been limited to four case studies
so far: the one used for illustration in this paper, a popular
smartcard-based payment system used in Belgium, a web-
based CD order tracking system and an e-commerce
system relying on an independent payment processing
agent. In particular, a similar derivation from a
confidentiality goal about order information allowed us to
derive vulnerabilities found in reported attacks on a well-
known CD sales company, namely, (a) confidential order
information was obtainable just by submitting guessable
order numbers, and (b) order numbers were appearing on
the page URL displayed by the order tracking service. For
the e-commerce system with independent payment
processing, the anti-model revealed a man-in-the-middle
attack making malicious use of the system’s services; this
was obtaind by anti-goal regression through the system’s

goals (in addition to domain properties, see Section 4). In
the latter case study, the initial anti-goal was not a negated
instantiation of a security goal pattern but just a negated
functional goal (“ the item is sent but not paid”). This case
study also suggested the need for distinguishing
vulnerabilities that are more critical in anti-goal
achievement than others.

This leads us to a number of issues still left open, e.g.,

• When does the cycle “requirement/anti-requirement/
countermeasure” terminate?

• Can we build richer catalogues of threat patterns and
corresponding “best” countermeasure patterns?

• To what extent do boundary conditions for conflict
among multiple goals [20] play the role of covert
channels that can be exploited by attackers to satisfy
their anti-goals?

• How do we incorporate trust models in this framework
and model trustworthy agents?

• Can we incorporate probabilistic frameworks to reason
about partial satisfaction of goals/anti-goals and
determine the likelihood of anti-goal occurrences?

These are issues we are working on.
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