George Danezis
Microsoft Research, Cambridge, UK

Anonymous credentials

A critique of identity

ldentity as a proxy to check credentials
Username decides access in Access Control Matrix

Sometime it leaks too much information

Real world examples
Tickets allow you to use cinema / train
Bars require customers to be older than 18

But do you want the barman to know your address?

The privacy-invasive way

Usual way:
Ildentity provider certifies attributes of a subject.
Ildentity consumer checks those attributes
Match credential with live person (biometric)

Examples:

E-passport: signed attributes, with lightweight access
control.

Attributes: nationality, names, number, pictures, ...

Identity Cards: signatures over attributes
Attributes: names, date of birth, picture, address, ...

Anonymous credentials

The players:
Issuer (I) = Identity provider
Prover (P) = subject
Verifier (V) = identity consumer

Properties:

The prover convinces the verifier that he holds a credential
with attributes that satisfy some boolean formula:

Simple example “age=18 AND city=Cambridge”
Prover cannot lie
Verifier cannot infer anything else aside the formula

Anonymity maintained despite collusion of V & |

The big picture

Name=Pegqgy,
1. age=2g,
Issuing protocol: address=Cambridge,
Prover Status=single
gets a certified Issuer Cannot !earn
credential. Passport banyﬂnng
. eyond age
Issuing
Authority
y A¥ y
Prover 2. Verifier
Showing Protocol: -
Peggy Prover mal?es assertions (B\Qrczsz
about some attributes Checking age)

age=25

Two flavours of credentials

Single-show credential (Brands & Chaum)
Blind the issuing protocol
Show the credential in clear
Multiple shows are linkable - BAD
Protocols are simpler —

Multi-show (Camenisch & Lysyanskaya)
Random oracle free signatures for issuing (CL)
Blinded showing

Prover shows that they know a signature over a particular
ciphertext.

Cannot link multiple shows of the credential
More complex — no implementations

Technical Outline

Cryptographic preliminaries
The discrete logarithm problem

Schnorr’s Identification protocol
Unforgeability, simulator, Fiat-Shamir Heuristic
Generalization to representation

Showing protocol

Linear relations of attributes

AND-connective
Issuing protocol

Blinded issuing

Discrete logarithms (l) - revision

Assume p a large prime
(>1024 bits—2048 bits)
Detail: p = gr+1 where g also large prime
Denote the field of integers modulo p as Z,

Example with p=g
Addition works fine: 142 =3, 3+3 =1, ...
Multiplicationtoo: 2%2 =4, 2%3 =1, ...
Exponentiationis as expected: 22 = 4

Choose g in the multiplicative group of Z,
Such that g is a generator
Example: g=2

Discrete logarithms (ll) -revision

Exponentiation is computationally easy:
Given g and x, easy to compute g~

But logarithm is computationally hard:
Given g and g% difficult to find x = log, g*
If pis large it is practically impossible

Related DH problem
Given (g, g%, g¥) difficult to find g
Stronger assumption than DL problem

More on Zp

Efficient to find inverses

Given c easy to calculate g mod p
(p-1)— ¢ mod p-1

Efficient to find roots

Given c easy to find g mod p
C (2/c) =1 mod (p-1)

Note the case N=pq (RSA security)

No need to be scared of this field.

Schnorr’s Identification protocol

Exemplary of the zero-knowledge protocols credentials
are based on.

Players
Public—gageneratorof Z,
Prover —knows x (secret key)
Verifier —knows y = g* (public key)

Aim: the prover convinces the verifier that she knows an x
suchthatg*=y
Zero-knowledge — verifier does not learn x!

Why identification?
Given a certificate containingy

Schnorr’s protocol

Public: g, p
Knows: x Knows: y=g*
TN ope
P->V: g"¥=a (witness) ‘%’
Peggy V->P: c (challenge) Victor
(Prover) (Verifier)
P->V: CX*W =T (response)
Random: w
Check:
g'=y‘a

l

g CX+W — (gx)cgw

No Schnorr Forgery (intuition)

Assume that Peggy (Prover) does not know x?

If, for the same witness, Peggy forges two valid
responses to two of Victor’s challenges

r=C, X+W

r,=C,X+W

Then Peggy must know x

2 equations, 2 unknowns (x,w) — can find x

Zero-knowledge (intuition)

The verifier learns nothing new about x.
How do we go about proving this?
Verifier can simulate protocol executions

On his own!
Without any help from Peggy (Prover)

This means that the transcript gives no
information about x

How does Victor simulate a transcript?
(Witness, challenge, response)

Simulator

Need to fake a transcript (g, c’, r')
Simulator:
Trick: do not follow the protocol order!
First pick the challenge ¢’

Then pick a random response r’
Then note that the response must satisfy:
gr' — (gx)c' gw' -> gw’ — gr’ / (gx)c’
Solve for gV
Proof technique for ZK

but also important in constructions (OR)

Non-interactive proof?

Schnorr’s protocol
Requires interaction between Peggy and Victor

Victor cannot transfer proof to convince Charlie
(In fact we saw he can completely fake a transcript)

Fiat-Shamir Heuristic
H[-]1is a cryptographic hash function
Peggy sets c = H[g"]

Note that the simulator cannot work any more
g" has to be set first to derive ¢

Signature scheme
Peggy sets c = H[g"V, M]

Generalise to DL represenations

Traditional Schnorr
For fixed g, p and public key h = g
Peggy proves she knows x such that h = g

General problem

FIX prime p, generatorsg,, ..., g,

Public key h'=g_ *g.% ... g/

Pegqgy proves she knows x_, ..., Xx;such that
1'=0,%9,7% - gy

DL represenation — protocol

Public: g, p
Knows: X, ..., X

¥ | random: w,

P->V: ﬂo<i<|gwi = d (witness)

Peggy
(Prover) V->P: c (challenge)
r = CX;+W, P->V:r,...,n (response)

Check:

(Ho<i<l giri) = h

Let’s convince ourselves: ([T..ic1 9" = (TTo<ic) 97D (TTocicy ™) = h€a

Knows:

h=g,9, ..

SO
)

Victor
(Verifier)

gIXI

DL represenation vs. Schnorr

Public: g, p
Knows: X,
¥ | random: w,
P->V: gW‘ = d (witness)

Peggy

(Prover) V->P: c (challenge)
ri = CXi'I'VVi P->V: r (response)

Check
- C
g =h¢a

Lets convince ourselves: (gi") = (g)(g") =hca

Knows:
h — g X1

1

SO
)

Victor
(Verifier)

Credentials — showing

Relation to DL representation

Credential representation:
Attributes x;
Credential h =g.**g,** ... g/, Sig;..,.,(h)

Credential showing protocol
Peggy gives the credential to Victor

Peggy proves a statement on values x.
X, qe = 28 AND x_,,,, = H{Cambridge]

age city
Merely DL rep. proves she knows x.

Linear relations of attributes (1)

Remember:
Attributesx,, i =1,...,4
Credential h =g,*=g.* 9,9, Sigccper(h)

Example relation of attributes:
(X, + 2X, — 10X, =13) AND (X, — 4X, = 5)
Implies: (x, = 2x,+3) AND (X, = 4X,+5)
Substituteinto h

h=g,25*3g,#%"5 9, g,%=(g,39,°)(9,°9,9,)¢ g, *
Implies: h/(g,2g.%) = (9,29,49,)% g, %

Linear relations of attributes (2)

Example (continued)
(X, + 2%, — 10X, = 13) AND (x, — 4Xy = 5)
Implies: h/(g,39,°) = (9,°9,%9,)+ g,
How do we prove that in ZK?

DL representation proof!
h"=h/(9,39,%)
91 =9:°9,%7; 9, =9,
Prove that you know x, and x,
suchthat h’=(g,")s (g,)

DL rep. — credential show example

Public: g, p Knows:
Knows: X, Xy X3 X, h=geg X2 g3x3g4x4
&
¥ random: w,, w, :IDQ?’
ny ny / [N
P->V: g1 192 2=4d (witness)
Peggy Victor
(Prover) V->P: c (challenge) (Verifier)
r,= CX3+W1 P->V: rur, (response)
r2 = CX4+W2
Check:

(9,)* (g,)= =(h")‘a

Check (g,")* (g,) = (h’)ca

Reminder
h=9,%9," 9,39,
h'=h/ (9.39,°) g, = 91292493 g, = 9,
a=g,"g,"" r =cx;+w, r,=CX, +W,
Check:

(9,)(g,)==(h")a =>
(9,)5¥9) (g,)exe) = (h [(939,997 ™ g™ =>
(912X3+3924X3+5 g3x3g4x4) =h

Vo

X X

1 2

A few notes

Showing any relation implies knowing all
attributes.
Can make non-interactive (message m)
c = H[h, m, a']
Other proofs:

(OR) connector (simple concept)
(X...=18 AND x =H[Cambridge])OR(xage=15)

age city

(NOT) connector

Inequality (x,,.> 18) (Yao's millionaire protocol)

age

Summary of key concepts (1)

Standard tools

Schnorr—ZK proof of knowledge of discrete log.

DL rep. — ZK proof of knowledge of
representation.

Credential showing
representation + certificate

ZK proof of linear relations on attributes (AND)
More reading: (OR), (NOT), Inequality

Issuing credentials

1.
Issuing protocol: @
Prover CannOt Iearn

gets a certified anything

credential.

Issuer

Prover Verifier

Credential

h=g,¢g,* ... g/
Siglssuer(h)

Issuing security

Prover cannot falsify a credential

Unlinkability

Issuer cannot link a showing transcript to an
instance of issuing

h, Sigi.....(h) have to be unlinkable to issuing

Achieving unlinkability
Issuer’s view: h = g *1g_*>...g/
Prover uses: h' = g %*g,%>...gXg

Issuing protocol — gory detalils

Knows: X, X, ... X

Private: x_, (Y, ..., ¥))
Public: h_ =g*, g =g"

Rand: w, |->P:
E P->|
|ssuer

ro = Co(xo + Zi XiYi) +Wo

Credential: h' = g>] g*

Knows: X, X, X

Y

gWo = d, (witness) ;
rover

Rand: a,a, a,

hl — h_ga1

c’.=H[h', g®2(h h)%a_]
o (challenge) Co=C,yta,

I (response)
Check: g™ = (h, h)%a,
r’0 = rO + a2 + C’Oal

Signature: (¢’ , r',)
Check: c’, = H[h’, g"°(h,h")<"]

Issuing protocol — Issuer side

Knows: X, X, ... X

Public: g, p

Private: x,, (y, ---, V)

Public: h_ =g*, g =g"

Rand: w, I->P: g"e=a, (witness)
E P->|- C, (challenge)
Issuer

Fo = Co(Xo + 25 XiYi) +W, |->P-: ro (response)

ZK knowledge proof of the

representation of h_h = g*J] g = g *2 xiyi) : just Schnorr!

Issuing protocol — Prover side (1)

Public:

gl pl ho= gxol gi = gyi

|->P: gW°=ao (witness)

P->|:

->P:

r

(challenge)

(response)

Rand: a

Check: g = (h h)<a,

Schnorr
Verification:

Issuer
knows the

representation
of (h h)!

Issuing protocol — Prover side (2)

Public: g,p,h,=g*,g;=9" Knows: x,, X, X
" &
[->P: gW°= d, (witness)
Prover
Rand: 3,4, a, 1) Set ¢,

hl — h_gc'31

P'>I: (Challenge) CIO - Ijl[hl’ gaz(hoh)agao]
Co=C'y+a,
2) Get r_ such
-SP- that...
->P: (response) Check: g = (h_h)<a,

Unlinkable r'y=ro+a,+c,a,

Credential: h' = g™ [] g;* Signatur My Goal

Check: ¢’ =HfiT;g (h h’)]

Issuing protocol — Prover side (3)

Public: g,p,h,=g% g,=9" Knows: x, X, X

» ¥

|->P: gW°=ao (witness)

Prover
Rand: a3, 3,
h' — h.gal
P->I: ¢ (challenge) Co= I:”hl' g*(h,h)>a,]
0 Co=Co+a,
|->P: I'o (response) Check: g™ = (h h)“a,

| A I
re=r,+a,+C.,a,;

Credential: h' = g* [g~ Signature: (c’,, r',)
Check: ¢’ = H[h’, g"°(h h")“°]

Goal:
c'o=HIh', g*(h,h)®=a] = HK, gre(h,h') <]
So g®(h,h)%a, = g"(h h’)¢>- must be true

Lets follow:
g"(h h’)-= g*(h,h)®a, <
g(ro +a2+C'od1) (hoh)'(C°+a3)g'C°al — gaz(hoh)a3ao S

(gre(hoh) <) (@2hgt)™) = (g2Lhsh)™) a, <

Substitute r',and ¢’

TRUE

Unlinkability

|lssuersees:c_, r., h

ol "ol

Such that g™ = (h h)“a,
Verifier sees: ., ', h'
Relation:

Random: a,, a,, a,

h’ - h.ga1
Co=Co+a,

I I
ro_ro+az+coa1

Even if they collude they cannot link the
credential issuing and showing

Notes on issuer

Authentication between Issuer and Peggy

Need to check that Peggy has the attributes
requested

Issuing protocol should not be run in parallel!
(simple modifications are required)

Full credential protocol

Putting it all together:
Issuer and Peggy run the issuing protocol.

Peggy gets:
Credential: h' = g*][g Signature: (c',, r',)
Check: c’, = H[N’, g"o(h h’)<"]
Peggy and Victor run the showing protocol
Victor checks the validity of the credential first

Peggy shows some relation on the attributes
(Using DL-rep proof on h’)

Key concepts so far (2)

Credential issuing
Proof of knowledge of DL-rep & x, of issuer
Peggy assists & blinds proof to avoid linking

Further topics
Transferability of credential
Double spending

Key applications

Attribute based access control
Federated identity management

Electronic cash
(double spending)

Privacy friendly e-identity
|d-cards & e-passports

Multi-show credentials!

References

Core:

Claus P. Schnorr. Efficient signature generation by smart
cards. Journal of Cryptology, 4:161—174, 1991.

Stefan Brands. Rethinking public key infrastructures and
digital certificates — building in privacy. MIT Press.

More:

Jan Camenisch and Markus Stadler. Proof systems for general
statements about discrete logarithms. Technical report TR
260, Institute for Theoretical Computer Science, ETH, Zurich,
March 1997.

Jan Camenisch and Anna Lysianskaya. A signature scheme
with efficient proofs. (CL signatures)

OR proofs

Peggy wants to prove (A OR B)
Say Ais true and B is false

Simple modification of Schnorr
Peggy sends witness
Victor sends commitment c

Peggy uses simulator for producing a response ry for B
(That sets a particular ¢p)
Peggy chooses c, suchthatc=c, + ¢y

Then she produces the response r, for A

Key concept: simulators are useful, not just proof
tools!

Strong(er) showing privacy

Designated verifier proof
A OR knowledge of verifier’'s key
Simulate the second part

Third parties do nor know if A is true or the
statement has been built by the designated
verifier!

Non-interactive proof not transferable!

