

KRvW
Associates

© 2007, Cigital & KRvW Associates

Introduction
SepAppDev 2007

KRvW
Associates

© 2007, Cigital & KRvW Associates

Contents of the Course
 Not so much in chronological order, but

 Security objectives
 Development process
 Mechanisms in current technologies
 Design
 Coding
 Quality assurance

KRvW
Associates

© 2007, Cigital & KRvW Associates

The Problem

KRvW
Associates

© 2007, Cigital & KRvW Associates

Software vulnerability growth

Software Vulnerabilities

1090

2437

4129 3784 3780

5690

0

1000

2000

3000

4000

5000

6000

2000 2001 2002 2003 2004 2005

KRvW
Associates

© 2007, Cigital & KRvW Associates

The Trinity Of Trouble:
Connectivity

 The Internet is everywhere
and most of our software is
on it

 When was the last time that
you did business with a
major vendor who had no
Internet connectivity?

 Tried VoIP on your mobile
phone in a coffee shop WiFi
hotspot yet?

The network is
the computer.

KRvW
Associates

© 2007, Cigital & KRvW Associates

The Trinity Of Trouble:
Complexity�

 A simple user interface can
be enormously complex
“under the hood”

 Consider what happens
behind the scenes in one of
today’s AJAX web
applications

 But it sure does make for a
compelling “user
experience”

KRvW
Associates

© 2007, Cigital & KRvW Associates

The Trinity Of Trouble:���
Extensibility

 Systems evolve in unexpected
ways and are changed on the
fly

 After all, who would want a
computing device that can’t be
functionally extended?

 From J2ME to desktop PC
users (running with
administrative privileges)

.NET

KRvW
Associates

© 2007, Cigital & KRvW Associates

The classic security tradeoff

Windows Complexity

0
5

10
15
20
25
30
35
40
45

Win
3.1

(1990)

Win
NT

(1995)

Win 95
(1997)

NT 4.0
(1998)

Win 98
(1999)

NT 5.0
(2000)

Win
2K

(2001)

XP
(2002)

Millions of Lines

KRvW
Associates

© 2007, Cigital & KRvW Associates

Learning from history
 We don’t pay enough attention

to our failures
 Consider other engineering

disciplines
 Transportation
 Construction
 Medical

KRvW
Associates

© 2007, Cigital & KRvW Associates

Focus on function
 Too much attention is paid to

functional spec
 Consider what can go wrong

as well

KRvW
Associates

© 2007, Cigital & KRvW Associates

KRvW
Associates

© 2007, Cigital & KRvW Associates

Security problems are complicated
CODE

 Buffer overflow
 String format
 One-stage attacks

 Race conditions
 TOCTOU (time of check to

time of use)
 Unsafe environment variables
 Unsafe system calls

 System()
 Untrusted input problems

DESIGN
 Misuse of software “feature”
 Flawed cryptographic key

management
 Compartmentalization problems in

design
 Catastrophic security failure

(fragility)
 Insecure or insufficient auditing
 Broken or illogical access control

(RBAC over tiers)
 Signing too much code

KRvW
Associates

© 2007, Cigital & KRvW Associates

Code example: The dreaded buffer overflow
 Overwriting the bounds of data

objects
 Allocate some bytes, but the

language doesn’t care if you try
to use more
 char x[12];
 x[12] = ‘\0’;

 Why was this done? Efficiency!
 Two main flavors of buffers

 Heap allocated buffers
 Stack allocated buffers
 Smashing the stack is the

most common attack

 The second most pervasive
security problem today in
terms of reported bugs

 Any guesses what problem
has overtaken it recently?

KRvW
Associates

© 2007, Cigital & KRvW Associates

Pervasive C problems
void main() {

char buf[1024];
gets(buf);

}

 How not to get input
 Attacker can

send an infinite
string!

 Chapter 7 of K&R
(page 164)

 Calls to watch out for

 Hundreds of such calls
 Use static analysis to find these

problems
 ITS4, Fortify

 Careful code review is
necessary

Instead of: Use:
gets(buf) fgets(buf, size, stdin)

strcpy(dst, src) strncpy(dst, src, n)

strcat(dst, src) strncat(dst, src, n)

sprintf(buf, fmt, a1,É) snprintf(buf, fmt, a1, n1,É)
(where available)

*scanf(É) Your own parsing

KRvW
Associates

© 2007, Cigital & KRvW Associates

Design example: Microsoft WMF
 Windows Metafile Format -- used for interchange of

data between programs
 Design feature included ability to include arbitrary

executable data along with a WMF file
 Feature was included to allow cancellation of

print files
 Attacker could send a WMF file with embedded

arbitrary executable code

KRvW
Associates

© 2007, Cigital & KRvW Associates

Breaking stuff is important
 Learning how to think like

an attacker is essential
 Do not shy away from

carrying out attacks on your
own stuff
 Engineers learn from

stories of failure
 Attacking is fun! Fun is

good!

KRvW
Associates

© 2007, Cigital & KRvW Associates

Solutions

KRvW
Associates

© 2007, Cigital & KRvW Associates

Software security: state of the practice
 Software security still in infancy

 Lacking standards
 Many “best practices” to

choose from
 Most have yet to really

prove themselves
 Information/guidance resources are

appearing quickly
 Study and adopt to your needs

 Tools are getting better, but
only cover coding defects
 Leave much to be done

manually

Software security is not security software!
Software security is about building things properly.

KRvW
Associates

© 2007, Cigital & KRvW Associates

What can be done?
Strive for the following criteria

 Repeatable
 Predictable
 Businesslike
 High quality
 Measurable

Must be firmly embedded into
entire existing dev process

without breaking it.

KRvW
Associates

© 2007, Cigital & KRvW Associates

Solution sets abound
Several “best practices” options to

choose from, including
 OWASP’s CLASP
 Microsoft’s SDL
 Cigital’s “touchpoints”

Each has strengths and weaknesses
 Best bet is to learn each and

adapt the aspects that work best
in your organization

 Alignment with extant build
process is vital

KRvW
Associates

© 2007, Cigital & KRvW Associates

Three pillars of software security
 Risk management framework
 Secure SDLC practices or “touchpoints”
 Knowledge catalog

KRvW
Associates

© 2007, Cigital & KRvW Associates

Why risk management?
 Business understands the idea of risk, even

software risk
 Technical perfection is impossible

 There is no such thing as 100% security
 Perfect quality is a myth

 Technical problems do not always spur action
 Answer the “So what?” question explicitly

 Help customers understand what they should do
about software risk

 Build better software

So what?

KRvW
Associates

© 2007, Cigital & KRvW Associates

The Cigital risk management framework

KRvW
Associates

© 2007, Cigital & KRvW Associates

Software security touchpoints

KRvW
Associates

© 2007, Cigital & KRvW Associates

Knowledge catalogs
 Principles
 Guidelines
 Rules
 Attack patterns
 Vulnerabilities
 Historical Risks

KRvW
Associates

© 2007, Cigital & KRvW Associates

Knowledge map

KRvW
Associates

© 2007, Cigital & KRvW Associates

Managing knowledge
 Perhaps the toughest hurdle

 Combines people, skills,
experience, etc.

 Training helps, but there is
no substitute for experience

 Start with clear targets in mind
 Train to get started
 Hire qualified people

 Mentoring is vital
 Apprenticeship still plays its

roll

KRvW
Associates

© 2007, Cigital & KRvW Associates

Will this stuff work?
When applied thoughtfully, there is

no reason that you can’t
produce measurable
improvements in your software
 Don’t get too hung up on

process
 Take small steps towards

your goal
 Start measuring

immediately

If you can’t measure it, how can
you manage it?

